
Lecture 12: Control Styles
Kenneth M. Anderson

Object-Oriented Analysis and Design

CSCI 6448 - Spring Semester, 2005

1

February 17, 2005 © University of Colorado, Boulder, 2005

2

Goals for this Lecture
Last Lecture

Designing Collaborations

This Lecture

Designing Control Styles

Or, designing the decision making processes of your application



February 17, 2005 © University of Colorado, Boulder, 2005

3

Application Control and Control Style
How does an application respond to events? How does it make 

decisions?

Typically via “control centers”; groups of objects that are in charge of 

the decision making process

Control style affects how intelligence is distributed among objects 

within a control center

A control style can be centralized, delegated, dispersed, or 

somewhere in between

February 17, 2005 © University of Colorado, Boulder, 2005

4

Centralized Control
A centralized control style places major decision making 
responsibilities in a small number of objects; those stereotyped as 
controllers

Most objects used by controllers are devoid of any significant decision 
making responsibilities

they are told what to do and they do it!

A variation of this style is the clustered control style; here decision-
making responsibilities are assigned to several controllers, each 
working on a small part of the overall control

Typically there is then one controller which “controls” each cluster; 
“one controller to rule them all and in the darkness bind them!” 
(obligatory Lord of the Rings reference!)



February 17, 2005 © University of Colorado, Boulder, 2005

5

Problems
With centralized control, generally one object (the controller) makes 

most of the important decisions

This is good since it centralizes control logic, but…

several problems can occur including

Control logic can get overly complex

All other classes may become information holders

this means that most responsibilities move to the controller which then 

loses cohesion

Controllers can become dependent on the contents of their 

information holders

If the information changes, the controller has to change; if there are too 

many information holders, the controller becomes highly coupled

February 17, 2005 © University of Colorado, Boulder, 2005

6

Delegated Control
In a delegated control style, the designer makes a concerted effort 

to delegate decisions, not only between controllers, but also to 

objects that have other responsibilities

Decisions made by controllers are limited to deciding what should be 

done; other objects then perform that task



February 17, 2005 © University of Colorado, Boulder, 2005

7

Advantages
Delegated control is more “object oriented” and leads to several 

benefits

Delegating coordinators tend to know about fewer objects than 

dominating controllers

This leads to a loosely coupled system

Changes typically affect fewer objects

Dialogs are higher-level

Collaborations between coordinators and the objects they coordinate 

tend to be higher level requests rather than simple requests to store and 

retrieve data

e.g. calculateTaxes() versus getTaxRate()

It is easier to divide design work among team members

More objects with interesting responsibilities makes it easy to divide 

design and implementation work among the development team

February 17, 2005 © University of Colorado, Boulder, 2005

8

Problems
Too much distribution of responsibility can lead to weak objects 

and weak collaborations

Carried to extremes, a delegated control style can result in objects 

that do not “know” or “do” enough to be interesting

Look for these warning signs

Small service providers used by a single client; the service was 

factored out of a controller and should be merged back in

Complicated collaborations between delegator and delegates; this 

can happen when not enough context is passed with a request

Lots of collaborations but not much work getting done



February 17, 2005 © University of Colorado, Boulder, 2005

9

Dispersed Control
A dispersed control style distributes decision-making 

responsibilities across many objects involved in a task

Benefits

Decision making logic becomes very simple

Problems

May become hard to identify where a particular decision is being made in 

a system

February 17, 2005 © University of Colorado, Boulder, 2005

10

Developing Control Centers
In all but the simplest of applications, you will have multiple control 

centers to design

Control design is important when controlling

user-initiated events

complex processes

work within a specific object neighborhood

external software systems

In each of these situations

pick a control style, and work on specific responsibilities and 

collaborations



February 17, 2005 © University of Colorado, Boulder, 2005

11

Mixing Styles
However, do not try to use the same control style everywhere

Develop a control style suited to each control situation; ask these 

questions

How are decisions made in this situation?

Who should make them?

What decisions should be delegated?

What patterns of delegation should be established and repeated

It is best to design collaborations so similar things work similarly

For instance, use cases that handle the same kind of user interactions 

should use the same control style even if the participating objects are 

different

February 17, 2005 © University of Colorado, Boulder, 2005

12

Example: Speak For Me
Imagine a software system designed to help a severely disabled 

user, one who is paralyzed, blind, and cannot speak

All this person can do is blink their eyes to indicate “yes” and “no”

This system allows this user to compose and send messages by 

speaking the alphabet and allowing the user to select letters to 

form into words and words into sentences

The user can indicate words by selecting a “space”, which is 

presented after the user has selected at least one letter

Several two letter words are used as commands: ES for “end 

sentence”, SM for “send message”, etc.

This system is similar to software used by Stephen Hawking, the 

famous physicist, although he can see and can move his fingers



February 17, 2005 © University of Colorado, Boulder, 2005

13

Example: Build a Message
We are going to design a control center for Speak For Me that 

manages the process of building a message

Speak For Me speaks letters until one is selected; when a letter is 

selected, it is spoken and then added to the current word

Based on the current message, Speak For Me can try to guess the 

user’s intentions

e.g. it can make guesses at the word that the user is trying to spell; if so 

it speaks the words and allows the user to select the correct word

it can also make guesses at the sentence that the user is trying to speak; 

e.g. it stores all previous sentences composed by the user for re-use; if 

so, it speaks sentences and allows the user to select the correct 

sentence

February 17, 2005 © University of Colorado, Boulder, 2005

14

Example: Actions and 

Responsibilities
When composing a message:

If letter selected, speak letter, add letter to current word

If space selected, speak space, add word to end of current sentence, 

start new word

If word selected, speak word, add to end of current sentence, start 

new word

If sentence selected, speak sentence, add sentence to message, start 

new sentence with new word

Repeat until a command is issued

Processing a command is a separate use case



February 17, 2005 © University of Colorado, Boulder, 2005

15

Example: MessageBuilder
Candidate: Message Builder

Purpose: The MessageBuilder is a hub of activity in the application. 

It coordinates the timing, the presentation of guesses, and the 

message construction. It centralizes control and is a core element 

of the control architecture

Stereotype: Controller or Coordinator?

February 17, 2005 © University of Colorado, Boulder, 2005

16

Example: Architecture
View

Controller

Model

Presenter Selector

MessageBuilder Timer

Vocabularly Alphabet

UserProfile

SentenceDictionary

Word Letter

Message

Arrow represents 
that MessageBuilder 
talks to potentially all 
Model classes



February 17, 2005 © University of Colorado, Boulder, 2005

17

Example: Control Strategy
When Timer “ticks” MessageBuilder presents its next “guess” via 

the Presenter

e.g. based on the current message, it may decide that the user is 

trying to spell the word “Chicago”; if so, it will have the presenter 

speak this word

When a selection comes in, MessageBuilder will process it

Adding letters to word, words to sentences, sentences to the 

message, or executing commands as needed

February 17, 2005 © University of Colorado, Boulder, 2005

18

Example: Initial Implementation
See the initial attempt at coding the MessageBuilder, using a 

centralized control style, in the mb1 directory of the example source 

code

All source code is available from the class website

All decision logic is placed in the MessageBuilder; other objects 

have very simple responsibilities

A lot of code was not shown; it would consist of various additional 

complex if statements to handle all of the various states



February 17, 2005 © University of Colorado, Boulder, 2005

19

Discussion
While all control logic is centralized; the number of states is causing 

the code to be very complex, with lots of conditionals, use of 

boolean flags, and the like

What we want is a way to make the MessageBuilder alter its 

behavior based on its current state

State Pattern to the rescue!

It is designed for exactly this context!

February 17, 2005 © University of Colorado, Boulder, 2005

20

State Pattern (I)
Problem: How to design an object to alter its behavior based on 

internal state changes

Context: Sometimes you need to make complex decisions about 

what to do based on the current state of an object. An object’s state 

can be represented by a number of different objects; The object 

must change its behavior based on the “current state”



February 17, 2005 © University of Colorado, Boulder, 2005

21

State Pattern (II)
Forces: Complex, multipart conditional expressions are often used 

to decide how to proceed; but this can result in code that is hard to 

maintain

Solution: Instead of writing code that specifically checks what state 

an object is in before deciding how to react, design one new class 

for each possible state that the object can be in. Reassign 

responsibilities for handling events to each state object; delegate 

all responsibilities to the state objects and pass in whatever context 

is needed for them to do their work

February 17, 2005 © University of Colorado, Boulder, 2005

22

Example: States needed for 

MessageBuilder
Idling - not doing anything

Guessing Letters Only - new word has started

Guessing Letters and Space - at least one letter has been added to 

current word, so add “space” as an option

Guessing Letters, Words, and Sentences - at least two letters have 

been added to current word

Ending Word - space or word has been selected; check to see if 

word is command

Execute Command - command detected

Suspended - allows user to “pause” message building



February 17, 2005 © University of Colorado, Boulder, 2005

23

Example: Code for Three 

States
See state-based implementation in the mb2 directory of the 

example source code

This is an example of a clustered control style; MessageBuilder has 

delegated decision making logic to each individual state

These three states contain simpler logic but handle everything that 

was handled in the original code example

Be sure to look at the simplified implementation of MessageBuilder

February 17, 2005 © University of Colorado, Boulder, 2005

24

Example: Switching Styles
Even though we make use of the State design pattern, we are still 

using a centralized control style

And we mentioned that a delegated control style was more “object 

oriented”; since it typically leads to a situation where intelligence and 

responsibilities are more evenly distributed

So, lets see how we might use a delegated control style in Speak 

For Me



February 17, 2005 © University of Colorado, Boulder, 2005

25

Example: Making “Letter” 

Smarter
Currently, our state keeps track of what the current selection is;

GuessingLettersOnly for instance knows that the current selection is a 

Letter and so it can just directly add it to the message, without 

checking its type

But, why not shift the responsibility of adding the selection to the 

message to the selection itself

after all each object is aware of its own identity; if the selection is a 

Letter, it knows that it has to call “addLetter() to add itself to the Message 

object

February 17, 2005 © University of Colorado, Boulder, 2005

26

First, define a new role
Since SpeakForMe will eventually make “guesses” about words and 

sentences, we will define a role called Guess

A Guess is responsible for knowing how to present itself and knowing 

how to add itself to a message

We will make Letter a subclass of Guess and eventually we’ll define 

classes called Word and Sentence that will also be subclasses of 

Guess; (we could also make Guess an interface)



February 17, 2005 © University of Colorado, Boulder, 2005

27

Second, simplify 

MessageBuilder
Since each selection (a Guess) knows how to add itself to a 

message, the code for handleSelection() in MessageBuilder 

becomes

public void handleSelection() {

selection.addTo(message);

}

We’ve completely delegated the responsibility of adding the 

selection to the current message to the selections themselves

February 17, 2005 © University of Colorado, Boulder, 2005

28

Delegating Guessing
The rest of the logic in the old version of MessageBuilder dealt with 

coming up with a guess

we only showed code for guessing the next letter…eventually we 

would have to add code that would try to guess the word a user was 

trying to spell, or code that would try to guess the sentence a user 

was trying to create

We want to have some other object do the guessing, that way all 

MessageBuilder has to do is ask for the next guess and present it



February 17, 2005 © University of Colorado, Boulder, 2005

29

Blackboard Pattern (I)
To take care of guessing, we will make use of another pattern, 

called Blackboard

In Blackboard you have four roles

A blackboard object that stores a particular message

A knowledge source that looks at the current message and makes a 

“bid” about how the current message should be modified

A bid that stores information about proposed modifications and the value 

associated with each of them

A controller that asks the knowledge sources to make bids on the current 

blackboard and then selects one of the bids based on some sort of 

evaluation process

We’ll use “highest bidder wins” :-)

February 17, 2005 © University of Colorado, Boulder, 2005

30

Blackboard Pattern (II)
In SpeakForMe, we will have the following objects play these roles

Guesser - plays the role of the controller; MessageBuilder delegates 

the “guessing responsibility” to this object

Alphabet - plays the role of a knowledge source; it has to come up 

with a letter to present to the user based on the current value of the 

message

eventually we can add additional knowledge sources, such as a 

Dictionary to guess words, and a SentenceHistory to guess sentences, 

etc.

Message - plays the role of the Blackboard

Bid - plays the role of the Bid (pretty original!)



February 17, 2005 © University of Colorado, Boulder, 2005

31

Example: Guesser Architecture

:Guesser :Alphabet

:Dictionary

:SentenceHistory

m :Message

nextGuess(m)

*bidOn(m)

<perform queries>

bid

pickHighestBid()

guess

February 17, 2005 © University of Colorado, Boulder, 2005

32

Example: Simplified 

MessageBuilder
With this new collaboration, we can eliminate all of the state 

objects from the clustered implementation of MessageBuilder

handleTimeout becomes

public void handleTimeout() {

selection = guesser.nextGuess(message);

selection.presentTo(presenter)

}

MessageBuilder is no longer a controller; it is simply a coordinator; 

all decision logic has been delegated to other classes!



February 17, 2005 © University of Colorado, Boulder, 2005

33

Discussion and Summary
Advantages of Delegated Style

Control architecture stays the same in the presence of a new 
“knowledge source”

Simply add new type of Guess and a new KnowledgeSource; nothing else 
changes

In a centralized control style:

the logic of the controller would change to become aware of the new 
type of Guess and the conditional logic of the knowledge source

In the clustered style

a new state would encapsulate this knowledge, but the other states 
would have to change to take advantage of the new state transitions


