
Lecture 11: Collaborations
Kenneth M. Anderson

Object-Oriented Analysis and Design

CSCI 6448 - Spring Semester, 2005

1

February 15, 2005 © University of Colorado, Boulder, 2005

Goals for this Lecture
Review content of Chapter 5 from the textbook

Discuss Collaborations

What are they?

How do we find them?

How do we simulate them?

2



February 15, 2005 © University of Colorado, Boulder, 2005

Solving Design Problems
Christopher Alexander (a man who created “design patterns” for 

architecture) said that we should solve design problems in “the 

least arbitrary manner possible.”

Wirfs-Brock and McKean state that we can achieve this by

designing simple, consistent communication between objects

designing collaborations such that changes do not ripple through the 

entire system under design

partitioning responsibilities in a reasonable manner among 

collaborations and when collaborations follow predictable patterns

3

February 15, 2005 © University of Colorado, Boulder, 2005

What is Object Collaboration
Collaborations are requests from one object to another

Or a group of objects working together making requests on one 

another

Our analysis and design model is incomplete until we flesh out 

which objects will be grouped together to handle the input events of 

our system under design

We organize objects into groups to fulfill collective responsibilities

We also decide how objects outside the group interact with services 

the group provides

Goal: to limit the impact of change; we should be able to modify the 

internals of a collaboration without impacting the rest of our application

4



February 15, 2005 © University of Colorado, Boulder, 2005

Collaboration Characteristics
OO Design is different from procedural design

Objects are arranged in networks, not hierarchies

Procedures separate data from behavior, whereas objects combine 

the two

Its easy to “slip back” into procedural programming however

Give one object too much power and it finds itself surrounded by 

simple information holders that don’t do much

Each object in a collaboration should have a well-defined role to 

play and knows which of its neighbors to ask for help

5

February 15, 2005 © University of Colorado, Boulder, 2005

Recording Collaborations
You can lay the foundation for collaboration design with CRC Cards

On the lined side of the card, you have space to list an object’s 

collaborators

You can indicate the relationships between an object’s responsibilities 

and its collaborators by drawing lines between them

6

Document

Knows contents

Knows storage location

Inserts and removes text,
graphics, and other elements

TextFlow
SaveCommand
CutCommand
PasteCommand



February 15, 2005 © University of Colorado, Boulder, 2005

Finding Collaborations
There are many ways we can identify collaborations in the system 

under design

Use stereotypes

Look at individual responsibilities

Design the details of a complex responsibility

Design collaborations for a specific use case or event

7

February 15, 2005 © University of Colorado, Boulder, 2005

Using Stereotypes
The role an object plays implies certain kinds of collaborations; 

Based on its role, what does an object need from its neighbors and 

what does it offer them?

We need to consider

how an object typically fulfills its responsibilities

how it is used by others

8



February 15, 2005 © University of Colorado, Boulder, 2005

Information Holders
Information holders know facts

It only collaborates with objects to provide access to its information

Questions to identify collaborations

Where does its information come from?

Does it create the information, ask for it, get told by someone else?

Is any information derived? From whom?

Does the information persist? Who handles persistence?

Is information cached? From where? When do I update it?

Does the information need to be converted to a different form? Who 
handles the conversion?

9

February 15, 2005 © University of Colorado, Boulder, 2005

Structurers
Structurers organize information

Questions to identify collaborations

Where do the structured objects come from?

How are the structured objects processed?

Does the structurer handle iteration? How are structured objects 
accessed?

Does the structurer persist?

Is the structurer responsible for answering cumulative questions?

For example, a Meeting object might be able to respond to the question 
“How many attendees?”

10



February 15, 2005 © University of Colorado, Boulder, 2005

Service Providers
Service providers perform computations

Questions for identifying collaborations

Who has the information required by a service provider?

Are services configurable? How?

Is any part of a responsibility prone to change? Should this 

responsibility be isolated in a service provider?

Does the application require different forms of the same service? How 

does the service vary?

11

February 15, 2005 © University of Colorado, Boulder, 2005

Controllers
Objects that make decisions and direct the actions of others are 
controllers; They always collaborate with others for two reasons:

to gather information to make decisions

to call on others to act

Their focus is on decision making; not on subsequent actions

Questions for identifying collaborations

Who has the information needed to make decisions?

Who performs the actions once a decision has been made?

Is the decision making process complex? Perhaps it should be 
distributed over multiple controllers?

12



February 15, 2005 © University of Colorado, Boulder, 2005

Coordinators
Coordinators exist solely to pass along information and call on 

others to act; their focus is on holding connections between objects 

and forwarding information and requests to them

Questions for identifying collaborations

How does a coordinator delegate work or pass along requests?

How does a coordinator find its delegates?

Do the delegates need to know about the coordinator?

13

February 15, 2005 © University of Colorado, Boulder, 2005

Interfacers
Interfacers provide bridges between naturally disjoint subsystems

They can act as a bridge between the system and its users (user 

interfacers), between different neighborhoods (internal interfacers) 

and different software systems (external interfacers)

Questions for User Interfacers

How does a user interfacer inform the system of user actions?

What system objects does the interfacer know of?

How many states does it track?

How do objects register interest in state changes?

14



February 15, 2005 © University of Colorado, Boulder, 2005

Interfacers, continued
Questions for internal interfacers

How does the interfacer collaborate with objects outside of its 

neighborhood?

How does it find its neighborhood?

How does it delegate requests?

Questions for external interfacers

Will the external interfacer have to convert data into object form?

How does the external interfacer connect to the outside world?

What will the interfacer do if it can’t establish a connection?

15

February 15, 2005 © University of Colorado, Boulder, 2005

Look at Individual Responsibilities
Asking questions about how an individual responsibility is fulfilled 

can lead to collaborations

Just as we saw with the “get total sale” example from lecture 10

getTotal() in the Sale object, required getSubtotal() in the LineItem 

object, which required getPrice() in the Product object

16

Sale

date

time

getTotal()

LineItem

quantity

getSubtotal()

Product

description

price

itemID

getPrice()

1 1..* 1*



February 15, 2005 © University of Colorado, Boulder, 2005

Design the Details of a 

Complex Responsibility
Another way to identify collaborations is to decompose a complex 

responsibility into smaller responsibilities

Thus, “calculate annual corporate taxes” becomes

Calculate applicable municipality taxes

Itemize income, expenses, and allowable state tax deductions

Calculate applicable state taxes

Itemize income, expenses, and allowable federal tax deductions

Calculate applicable federal taxes

We will need a collaboration to step through each of these 

responsibilities (e.g. manage the overall process) and collaborations 

to perform each individual responsibility

17

February 15, 2005 © University of Colorado, Boulder, 2005

Design Collaborations for a 

Specific Use Case or Event
Start with a specific use case or event and design a collaboration to 
handle it

Goal is to answer questions like

What services are invoked between collaborators? Who is in control?

How and when are objects created?

How long and how often do they need to see each other?

Where are the branches in logic? Where are the decision points?

Do the decision makers have what they need? Where will they get 
their information?

What information holders get passed around?

18



February 15, 2005 © University of Colorado, Boulder, 2005

Examples
The book provides examples of collaborations (and how to solve 

problems with them) on pages 172-177

Collaborations might be dictated by application architecture (172)

Too many connections from outside to objects within a neighborhood 

! Use a Facade Pattern

Too many branches and choices

Use the Double Dispatch pattern

The double dispatch pattern is shown using a sequence diagram, we will 

cover this diagram and a number of other UML diagrams in lectures 13 

and 14

19

February 15, 2005 © University of Colorado, Boulder, 2005

Testing Collaborations
To test a collaboration, “simulate” it

You can quickly find errors and omissions in your model this way

a simulation can identify new objects and responsibilities

a simulation can show that a particular object is ill-conceived and not 

needed

a simulation can identify vague responsibilities

a simulation can provide justification for shifting, merging, or splitting 

responsibilities among candidates

20



February 15, 2005 © University of Colorado, Boulder, 2005

Planning a Simulation
Role-play the hard parts first

not everything is worth simulating

Set a goal for the simulation

Test ideas; Study coordination and control; develop a consistent 

collaboration style, etc.

Set boundaries based on your goal

which objects and responsibilities will be invoked

Assign candidates to team members

Each person is responsible for playing the role of particular objects!

21

February 15, 2005 © University of Colorado, Boulder, 2005

Planning a Simulation, cont.
Simulate use cases

Invent controllers if you need them

Test one area at a time

Test for what you don’t know

Limit the time spent simulating

22



February 15, 2005 © University of Colorado, Boulder, 2005

Running a Simulation
Start with an event

What object should be informed of the event? Is there a CRC card that 
describes that object? If not, make one

What responsibility does the event ask the object to fulfill; has this 
responsibility been identified? If not, write it down

Who will the object collaborate with to fulfill the responsibility?

Make sure to express the event as an “intention”

Not “The user clicks a button”

But “The user saves the file”

Now make your objects take responsibility for the event

Have a physical ball represent “control” and pass the ball around as 
messages are exchanged

23

February 15, 2005 © University of Colorado, Boulder, 2005

During the Simulation
Stay at the same conceptual level

If a collaboration switches to a different conceptual level of the system, 
defer the details that switch to another simulation

Follow the simulation closely

Do the patterns of message passing make sense?

Think Critically

Ask questions like “okay, this object needed this piece of information to do 
that; how did it get that information?”

Or “How did I learn of your existence? If I don’t know about you, I can’t send 
a message to you!”

Sketch the collaborations

Using CRC cards and lines between them; or a whiteboard

Write down what you don’t know; deal with those issues later

Rewrite candidate cards as new responsibilities are identified

24


