
Lecture 10: Responsibilities
Kenneth M. Anderson

Object-Oriented Analysis and Design

CSCI 6448 - Spring Semester, 2005

1

February 10, 2005 © University of Colorado, Boulder, 2005

2

Goals for this Lecture
Review content of Chapter 4 from the textbook

Discuss Responsibilities

What are they?

How do we find them?

How do we describe them?

How do we assign them?



February 10, 2005 © University of Colorado, Boulder, 2005

3

Responsibilities
The core of RDD is assigning responsibilities to objects

So, what is a responsibility?

Responsibilities are general statements about software objects; 

they include

The actions an object performs

The knowledge an object maintains

Major decisions an object makes that affect others

February 10, 2005 © University of Colorado, Boulder, 2005

4

Example: Teakettle (I)
Consider the design of a teakettle

What is the right form for a teakettle?

A teakettle holds water that can be heated until boiling

People can safely pick up a teakettle when it is filled with boiling water 
and pour a cup of tea

By convention, a teakettle whistles when the water boils

These characteristics can be restated as responsibilities

Pour contents without spilling or splashing

Hold water that can be heated until boiling

Is safe to hold and carry while water is hot

Notify when boiling occurs



February 10, 2005 © University of Colorado, Boulder, 2005

5

Example: Teakettle (II)
Did we get this right? It depends on the boundaries we have set 
for the problem; in conventional terms we have the bases covered

But some designers like to redefine the problem: “Its not the 
teakettle that needs to be designed, but the method of heating the 
water!”

Here the teakettle becomes part of the context, rather than the “form 
being designed”

This type of thinking might lead to innovation such as an “instant 
hot” unit that heats tap water as it flows through it

The trick is to know when to indulge this type of thinking; 
sometimes it leads to innovation but sometimes it adds 
unnecessary complexity and expense

For most people, the conventional teakettle works just fine!

February 10, 2005 © University of Colorado, Boulder, 2005

6

Finding Responsibilities
Use Cases

Identify system responsibilities stated or implied by use cases

plug gaps in use cases by developing lower-level responsibilities

Themes and Design Stories

Follow “what if…then…and how” chains

Identify stereotypical responsibilities

Identify responsibilities to support relationships between 

candidates

Patterns (!)



February 10, 2005 © University of Colorado, Boulder, 2005

7

Use Cases and Responsibilities
Use cases describe our software from the perspective of an 
outside user

They don’t tell how something is accomplished

We need to “bridge this gap” by transforming these descriptions into 
explicit statements about actions, information, or decision-making 
responsibilities

Bridging the Gap

Identify things the system does and the information it manages

Restate these things as responsibilities

Break them down into smaller parts if necessary and assign them to 
appropriate objects

February 10, 2005 © University of Colorado, Boulder, 2005

8

Example: University Enrollment
A student can register online for classes by filling out and 

submitting an online registration form for approval. While filling out 

the registration form, a student can browse course schedules, 

cross-listed courses, audit degree requirements, and update 

personal and financial aid information. The student can also 

access the “waitlist class” and “drop class” functions

The system should identify problems as courses are added, such 

as time conflicts, full classes, lack of prerequisites, etc.



February 10, 2005 © University of Colorado, Boulder, 2005

9

Example: Responsibilities
Generate and display an online registration form (something needs 
to know the structure of the form and how to display it)

Provide feedback as the student enters course selections about 
conflicts or problems (Something needs to check that a student 
can sign up for a course; a component is also needed to display 
feedback about the results)

Provide capabilities for browsing, auditing degree requirements, 
and updating personal/financial information (browsing sounds like 
a big responsibility, auditing sounds like a complex process, 
updating personal information will require specific boundary, 
controller, and domain classes)

…

February 10, 2005 © University of Colorado, Boulder, 2005

10

Example: Specific Scenario
1. Student logs in

2. System verifies that student is eligible to register and displays 

reg. form

3. Student adds courses to schedule

4. System verifies schedule and returns approved courses for 

confirmation

5. Student confirms schedule

6. System updates course rosters and confirms successful 

registration



February 10, 2005 © University of Colorado, Boulder, 2005

11

Example: More responsibilities
Check that student is eligible to register

From step 2

Add student to course rosters

From step 6

Display confirmation of registration

From step 6

Validate each course in schedule meets constraints such as 

prerequisites, etc.

From step 4

February 10, 2005 © University of Colorado, Boulder, 2005

12

Example: Filling in gaps
These directly derived responsibilities have gaps; ask questions 
and identify additional responsibilities

How are prerequisites specified?

A relationship between course objects?

Possibly need structurer to handle this

What states does a student’s schedule go through? “build/submit/
confirm”

Who manages this life cycle? The schedule object?

Does registering happen in “real time”?

How much help should the system give to a student when things go 
wrong?



February 10, 2005 © University of Colorado, Boulder, 2005

Themes and Design Stories
In lecture 9, we saw that design stories can be used to identify 

candidate objects... they can also be used to identify system 

responsibilities

Lets return to the example design story that discussed an Internet 

banking application (See page 117-119)

13

February 10, 2005 © University of Colorado, Boulder, 2005

14

“What if” scenarios
Asking “what if” questions can lead to lines of reasoning that 

identify additional responsibilities

What if the database goes down before my schedule is confirmed?

Is the student out of luck? Can the schedule be saved elsewhere and 

retrieved for later submission?

This type of thinking will lead to new candidates with 

responsibilities to handle this situation



February 10, 2005 © University of Colorado, Boulder, 2005

15

Stereotypical Responsibilities
As mentioned before, stereotypes have common sets of 

responsibilities that can help generate specific responsibilities for 

objects that play these roles

Information holders “know” things

Service providers “do” things

Structurers “create” and “maintain” things

…

February 10, 2005 © University of Colorado, Boulder, 2005

16

Responsibilities from Relationships

A meeting has attendees

Who has the following responsibility:

“How many people attended this meeting?”

Probably the meeting object

This responsibility was derived from the relationship between the two 

objects however



February 10, 2005 © University of Colorado, Boulder, 2005

17

Patterns for Identifying Responsibilities

Craig Larman has developed patterns for helping to identify 

responsibilities (we will review four here; he has actually developed 

nine such patterns)

Information Expert (or Expert)

Creator

Low Coupling

High Cohesion

This material taken from Craig Larman’s Applying UML and 

Patterns. © Craig Larman, 2002 ISBN 0-13-092569-1

February 10, 2005 © University of Colorado, Boulder, 2005

18

Information Expert
Assign a responsibility to the class that has the information 

necessary to fulfill it

Consider a “cash register” domain with the following objects: Sale, 

LineItem, Product

Consider the responsibility: “Know the grand total of a Sale”

It seems obvious that the sale object should have this responsibility, 

but lets look at the implications



February 10, 2005 © University of Colorado, Boulder, 2005

19

Sales Example: Class Diagram

If we want to get the total value of a sale, we would need to call a method like 

getTotal() on Sale; This method would need to call a method like getSubtotal() on 

LineItem, since LineItem is the “expert” for this information; But this method would 

need to call getPrice() on Product since only Product has this information

Sale

date

time

LineItem

quantity

Product

description

price

itemID

1 1..* 1*

Sale

date

time

getTotal()

LineItem

quantity

getSubtotal()

Product

description

price

itemID

getPrice()

1 1..* 1*

February 10, 2005 © University of Colorado, Boulder, 2005

20

Creator
Assign class B the responsibility of creating an instance of A if one 
or more of the following is true

B aggregates A

B contains A

B records instances of A

B closely uses A

B has the data required to initialize A

In our previous example, Sale should be assigned the 
responsibility of creating LineItem objects; this means that Sale 
will need a method like “addLineItem()” or similar



February 10, 2005 © University of Colorado, Boulder, 2005

21

Low Coupling
Assign a responsibility so that coupling remains low

coupling is a measure of how strongly a class is connected to, has 

knowledge of, or relies on other classes

Building on our “cash register” example, consider the classes 

Payment, Register, and Sale

How should we handle the “make payment” responsibility

February 10, 2005 © University of Colorado, Boulder, 2005

:Register

:Sale

p :Payment

:Register :Sale

:Payment

1. makePayment() 1.1 create()

1.2 addPayment(p)

1. makePayment()
1.1 makePayment()

1.2 create()

22

Two Options
Which option should we 

choose?

The first requires the 

Register object to know 

about two objects

The second requires 

Register to know about 

only one object

All things being equal, 

this pattern would 

choose option 2

Note that we name the Payment object above, so we 

can pass it as a parameter.



February 10, 2005 © University of Colorado, Boulder, 2005

23

High Cohesion
Assign a responsibility so that cohesion remains high

In terms of object design, cohesion is a measure of how strongly 

related and focused the responsibilities are of a class

In previous example, this pattern would pick option 2 again; The 

Register object is likely to have many operations that it must 

handle (or coordinate); if it has to know the details of handling 

each operation it will lack cohesion

February 10, 2005 © University of Colorado, Boulder, 2005

24

Recording Responsibilities
Responsibilities should be recorded on CRC cards

If you can’t find a “home” for a responsibility; record it on a post-it 

node and place it to one side…eventually a home will be found for it

or it may need to be decomposed into smaller responsibilities that are 

easier to assign

You may also add unassigned responsibilities to a list

as new candidates are developed you can pull responsibilities from 

the list (or the list might drive the creation of new candidates!)



February 10, 2005 © University of Colorado, Boulder, 2005

Strategies for Assigning 

Responsibilities
So far, we have discussed how to search for responsibilities

Now we will look at techniques for assigning responsibilities to 

candidates

The key is looking for “important” objects, such as

objects that bridge layers in your application or coordinate the actions 

of other objects

objects that are visible across multiple object neighborhoods

objects that represent key domain concepts

objects that manage complex services

25

February 10, 2005 © University of Colorado, Boulder, 2005

Initial Assignments
Choose objects that you deem central players and concentrate on 

them first

Expect to work on more than one object at a time

You can cluster candidates to work on by

domain concepts

use cases

design themes

interfacers

26



February 10, 2005 © University of Colorado, Boulder, 2005

27

Techniques
State responsibilities generically; aim for a level above individual 

attributes or operations

For a customer object, say

“Knows name and preferred ways of being addressed”

Don’t say

“Knows first name”

“Knows last name”

“Knows nick name”

February 10, 2005 © University of Colorado, Boulder, 2005

Techniques, continued
Use the right level of description

Responsibilities should be worded to match the level of abstraction of 

their associated candidates

The book provides two examples on pages 129-131

The MVC pattern example contains broadly stated responsibilities 

because they describe roles that can be adopted by many differernt 

types of objects

The Document example contains terse descriptions that are more 

specific to their associated objects

28



February 10, 2005 © University of Colorado, Boulder, 2005

29

Techniques, continued
Use strong descriptions

Vague responsibilities do not help

So use verbs like

remove, merge, calculate, activate

rather than

organize, record, find, process, maintain

Avoid nonessential (out-of-scope) responsibilities

Do not overlap responsibilities

For instance do not have a client verify the data it sends AND have 
the server verify the data it receives; have the server verify and the 
client be able to handle situations where data is rejected

February 10, 2005 © University of Colorado, Boulder, 2005

Techniques, continued
Handle large or complex responsibilities by dividing them or sharing 

them among multiple objects

Balance responsibilities to create “intelligent” objects

Make sure an object isn’t doing too much

Keep behavior with related information

Keep information about one thing in one place

Distribute system intelligence

30



February 10, 2005 © University of Colorado, Boulder, 2005

31

Testing Candidate Quality
Once responsibilities have been assigned, check to see that each 

candidate is well formed

Does it stick to its purpose?

Are its responsibilities clearly stated?

Do its responsibilities match its role?

Is it of value to other objects in its neighborhood?

What’s Next?

Designing collaborations


