
Lecture 7 and 8: Use Cases
Kenneth M. Anderson

Object-Oriented Analysis and Design

CSCI 6448 - Spring Semester, 2005

1

February 1-3, 2005 © University of Colorado, Boulder, 2005

2

Goals for this Lecture
Define Use Cases

Review UML Notation for Use Cases

Look at a variety of Use Case examples

from the books

Writing Effective Use Cases

by Alistair Cockburn

ISBN: 0-201-70225-8

Patterns for Effective Use Cases

by Steve Adolph and Paul Bramble

ISBN 0-201-72184-8

February 1-3, 2005 © University of Colorado, Boulder, 2005

3

Use Case Terminology
Use Case Model

consists of actors and use cases

Actors

entities which interact with a system

Actors are different from users

An actor represents a role that a user can play

Actors are classes; Users are instances

Actors are unlike other objects in that their behavior is non-deterministic

February 1-3, 2005 © University of Colorado, Boulder, 2005

4

Use Case Terminology
Use Cases

An actor can carry out many different operations on the system

Each operation or task is a separate use case

Use cases participate in relationships with other use cases

They might use or include another use case

They might extend another use case

They might generalize or specialize another use case

February 1-3, 2005 © University of Colorado, Boulder, 2005

5

Use Cases as Requirements
The set of use case descriptions specifies the complete functional
requirements of a system

Things to remember

Use cases are requirements;

They are not all of the requirements

Not good for specifying user interfaces, data formats, business rules,
non-functional requirements

They are not easy to write!

But there are techniques to make your job easier

Analogy: A good story is easy to read, but writing a good story is hard!

February 1-3, 2005 © University of Colorado, Boulder, 2005

6

More on Use Cases
A use case captures a contract between the stakeholders of a

system about its behavior

The use case is initiated by the primary actor; secondary actors may

come into play while the use case is executing

Note: actors are not restricted to human beings, other computer

systems may serve as secondary actors

The primary actor is trying to achieve a goal

Many things may happen; the goal can be achieved (in more than one

way) or the use case may fail (also, in more than one way)

A use case captures all of these possible scenarios

February 1-3, 2005 © University of Colorado, Boulder, 2005

7

More on Use Cases
Use Cases are primarily textual

We shall review a graphical notation for use cases; this notation is

useful for specifying relationships between use cases and actors

It is inappropriate, however, for specifying the details of a use case

Writing good use cases is thus a question of style; some writing

styles are more effective than others

February 1-3, 2005 © University of Colorado, Boulder, 2005

8

Parts of a Use Case
A use case can be as simple as

a paragraph of informal text

to

template-based forms that remind developers what information to
include

as well as supported by more formal notations

What to use depends on the ceremony level of the project

high ceremony projects will tend towards formal templates

mid ceremony projects will use forms with some or all of the
recommended fields

low ceremony projects will get by with paragraphs of text

© University of Colorado, Boulder, 2005February 1-3, 2005

Primary Actor Goal in Context

Scope Level

Stakeholders and Interests Precondition

Minimal Guarantees Success Guarantees

Trigger Main Success Scenario

Extensions Technology and Data Variations List

Priority Releases

Response Time Frequency of Use

Channel to Primary Actor Secondary Actors

Channels to Secondary Actor Open Issues

9

Parts of a Use Case
As recommended

by Alistair

Cockburn in

“Writing Effective

Use Cases”

February 1-3, 2005 © University of Colorado, Boulder, 2005

10

Highlights from Parts List
Primary Actor

Actor that initiated use case

Goal Level

Can be one of “very high summary”, “summary”, “user goal”, “sub-

function”, and “too low”

Rule of thumb

a user goal is one that can be completed in one sitting at a computer

a summary goal is one that cannot be completed in one sitting, and may

require multiple people, organizations, and systems interacting to

achieve the goal

February 1-3, 2005 © University of Colorado, Boulder, 2005

11

Highlights from Parts List
Main Success Scenario

How is the goal accomplished successfully

Extensions

How might the main success scenario be altered and

1) still succeed

or

2) fail

February 1-3, 2005 © University of Colorado, Boulder, 2005

12

Lets look at some examples…
From Alistair Cockburn’s book

Establishing Scope and Brainstorming Use Cases

pages 36-38

Use Case Narrative

page 18

Example Use Cases

pages 4-6 and 9-11

Screen shots of these examples are available on the class website in

the “Related Materials” section

© University of Colorado, Boulder, 2005February 1-3, 2005

13

Graphical Notation

February 1-3, 2005 © University of Colorado, Boulder, 2005

14

Relationships
A use case can include another use case within it

The included use case is typically referenced by name and underlined

in a particular action step

The association is stereotyped «include»

See pages 191-193 of Adolph and Bramble

Also on class website

Once the included use case is finished, the original use case

proceeds as normal

February 1-3, 2005 © University of Colorado, Boulder, 2005

15

Relationships, continued
A use case can extend another use case

This typically occurs when an extension has gotten to big for a

particular use case

An extension “interrupts” the base use case when a condition comes

true

The association is stereotyped «extend»

See pages 194-195 of Adolph and Bramble

Also on class website

The extending use case has the option of terminating the original

use case; otherwise, the original use case proceeds as normal

February 1-3, 2005 © University of Colorado, Boulder, 2005

16

Relationships, continued
Use cases can declare that they can be extended using “extension

points”

See pages 188-189 of Adolph and Bramble for an example of the

graphical notation for extension points and how they can be used

textually

Also on class website

February 1-3, 2005 © University of Colorado, Boulder, 2005

17

Relationships, continued
The UML also allows for inheritance relationships on actors and use

cases

There are a lot of pitfalls associated with this; so be careful

Example of proper use and some of the pitfalls are shown on pages

239-241 of Cockburn

Also on class website

February 1-3, 2005 © University of Colorado, Boulder, 2005

18

Two Models of Use Cases
Cockburn has developed two models for understanding use cases

Actors and Goals

Stakeholders and Interests

These models can help clarify how to think about and write use

cases

February 1-3, 2005 © University of Colorado, Boulder, 2005

19

Stakeholders With Interests
A use case can be viewed as a contract between stakeholders with

interests

This model identifies what to include in a use case and what to

exclude

Not all stakeholders are present during the operation of the system;

when a primary actor interacts with a system, the system must

uphold the interests of the “off-stage” actors

February 1-3, 2005 © University of Colorado, Boulder, 2005

20

Stakeholders/Interests

Continued
Ways to uphold stakeholder interests

Gather Information

What information do off-stage actors require to understand the actions of
the primary actor

Running Validation Checks

Is the primary actor entering valid information

Updating Logs

When did the primary actor perform his actions

Modeling stakeholder interests gives us a rule of thumb: a use
cases contains all and only the behaviors related to satisfying
stakeholder interests

February 1-3, 2005 © University of Colorado, Boulder, 2005

21

Using the model
In writing use cases, this model recommends

List all Stakeholders

Name their interests with respect to the use case

State what it means to each stakeholder that the use case completes

successfully

List what guarantees each stakeholder wants from the system

Now, we can write actions steps

This brings us to the Actors and Goals model

February 1-3, 2005 © University of Colorado, Boulder, 2005

22

Actors and Goals
An actor has goals

To achieve a goal an actor has to take actions

Achieving a goal may require accomplishing sub-goals

Achieving sub-goals may require the support and collaboration of

secondary actors

An action may call upon the responsibilities of a secondary actor; this

sets up an interaction where the calling actor must wait for the

secondary actor to achieve the goals associated with that

responsibility

© University of Colorado, Boulder, 2005February 1-3, 2005

Actors and Goals Illustrated

23

Responsibility

 Goal 1

 Goal 2

 Action 1

 Action 2

Responsibility

 Goal 1

 Action 1 Responsibility

System

Use Case

Primary
Actor

Secondary
Actor

February 1-3, 2005 © University of Colorado, Boulder, 2005

24

Discussion
Goals have sub-goals

avoid having too many sub-goals however

Goals can fail

We must specify how to respond to failure conditions using extensions

Actions capture Interactions

Writing Action Steps is critical to writing good use cases

February 1-3, 2005 © University of Colorado, Boulder, 2005

25

Writing Action Steps
Action Steps are written in one grammatical form

a simple action in which one actor either

accomplishes a task

or passes information to another actor

Examples

User enters name and address

At any time, user can request the money back

The system verifies that the name and account are current

February 1-3, 2005 © University of Colorado, Boulder, 2005

26

Action Step Guidelines
#1: Use Simple Grammar

Subject…verb…direct object…prepositional phrase

The subject is important, see guideline 2

The system…deducts…the amount…from the account

Bad writing makes the story hard to follow

Complex writing makes it hard to extend an action step

e.g. if a step does three things, then if you extend that step, which “thing”

does it extend?

February 1-3, 2005 © University of Colorado, Boulder, 2005

27

Action Step Guidelines
#2: Show Clearly “Who Has the Ball”

For each step, who is performing it?

Think of friends kicking a soccer ball

You can pass it to yourself

You can pass it to a friend

You can do something with the ball (e.g. perform a trick)

The person with the ball represents the actor

The ball represents a information being passed between actors

You can manipulate the information or pass it on

At the end of the step, who has the ball?

The answer should always be clear in the writing

February 1-3, 2005 © University of Colorado, Boulder, 2005

28

Action Step Guidelines
#3: Write From a Bird’s Eye View

Developers tend to write action steps from the system’s perspective

rather than a user’s external perspective

e.g. “Get ATM Card and PIN” -- bad

rather “The customer inserts the card”

and “The customer enters the PIN”

Alternative Style

Customer: Inserts the Card

Customer: Enters the PIN

February 1-3, 2005 © University of Colorado, Boulder, 2005

29

Action Step Guidelines
#4: Show the Process Moving Forward

The amount of progress made in one action step varies according to
the level of the use case

In a summary use case, each step might satisfy a goal

In a subfunction use case, each step may correspond to a computation
by the system or data entry by the user

If a use case has 17 or more steps, it may indicate that the scope of
each step is too small

Not “User hits tab key” but “User enters Name”

To find a slightly larger scope for a step, ask “Why is the actor doing
this?” The answer is probably the scope you are looking for

February 1-3, 2005 © University of Colorado, Boulder, 2005

30

Action Step Guidelines
#5: Show the Actor’s Intent, Not the Movements

Before

System asks for name; User enters name

System prompts for address; User enters address

User clicks “OK”

System presents user’s profile

After

User enters name and address

System presents user’s profile

Otherwise you end up with longer, brittle, and over-constrained use
cases; why?

February 1-3, 2005 © University of Colorado, Boulder, 2005

31

Action Step Guidelines
#6: Include a “Reasonable” Set of Actions

Ivar Jacobson’s notion of a transaction

Actor sends request and data to system

System validates the request and data

System alters its internal state

System responds to actor with result

An action step can contain all four; or start with some in one step and

end with the others in the subsequent step

See examples in lecture (page 94 of Cockburn)

February 1-3, 2005 © University of Colorado, Boulder, 2005

32

Action Step Guidelines
#7: “Validate” Do not “Check Whether”

Before

The system checks whether the password is correct

If it is, the system presents the available actions for the user

After

The system validates the password is correct

The system presents the available actions for the user

With “Checks” you always have to say “If true” or “If false” in the next
step…not good; with validates you choose the scenario and place the
alternative path in the extensions

February 1-3, 2005 © University of Colorado, Boulder, 2005

33

Action Step Guidelines
#8: Optionally Mention the Timing

Most steps follow directly from the previous one; Occasionally you will

need to say something like:

At any time between steps 3 and 5, the user will…

As soon as the user has …, the system will …

Feel free to put in the timing, but only when you need to, usually the

timing is obvious

February 1-3, 2005 © University of Colorado, Boulder, 2005

34

Action Step Guidelines
#9: Idiom: “User has system A kick System B”

Situation: you need your system (A) to fetch information from another

system (B)

Remember to keep the user in control

Not: User clicks Fetch button, at which time the system fetches data

from system B (see #5)

But: User has the system fetch data from system B

Ball is clearly passed from user to A to B; responsibilities are clear;

and interface is not specified

February 1-3, 2005 © University of Colorado, Boulder, 2005

35

Action Step Guidelines
#10: Idom: “Do Steps x-y until Condition”

Situation: need to repeat a set of steps

If only one step needs repeating, put the repetition in the step

The user selects one or more products

If more than one step needs repeating, you can place the repetition

before or after the set of steps; Cockburn recommends after in

general, but before if the steps can occur in random order

See examples next slide

February 1-3, 2005 © University of Colorado, Boulder, 2005

36

Action Step Guidelines
Example: Putting Repetition Before

Customer logs into system

System presents products and services
 Steps 3-5 can happen in any order

User selects products to buy

User specifies form of payment

User specifies destination address

User finishes shopping

System processes order (of selected products with form of payment
and ships to destination address)

February 1-3, 2005 © University of Colorado, Boulder, 2005

37

Action Step Guidelines
Example: Putting Repetition After

1. Customer supplies id or email address

2. System displays customer’s preferences

3. User selects an item to buy

4. System adds item to customer’s “cart”

Customer repeats steps 3 and 4 until done

5. Customer purchases the items in the cart

February 1-3, 2005 © University of Colorado, Boulder, 2005

38

The Writing Process
Cockburn recommends the following process for writing use cases

1. Name the system scope and boundaries

2. Brainstorm and list the primary actors

3. Brainstorm and exhaustively list user goals for the system

4. Capture the outermost summary use cases to see who really cares

5. Reconsider and revise the summary use cases. Add, subtract, or

merge goals

February 1-3, 2005 © University of Colorado, Boulder, 2005

39

The Writing Process, continued
1. Select one use case to expand

2. Capture stakeholders and interests, preconditions, and guarantees

3. Write the main success scenario (MSS)

4. Brainstorm and exhaustively list the extension conditions

5. Write the extension-handling steps

6. Extract complex flows to sub use cases; merge trivial sub use cases

7. Readjust the set: add, subtract, merge, as needed

