
Lecture 6: Analysis and 

Design Descriptions
Kenneth M. Anderson

University of Colorado, Boulder

January 27, 2005

1

January 27, 2005 © University of Colorado, Boulder, 2005

Overview
Discuss the various types of system descriptions that can be used 

during analysis and design

Use Cases (in brief, more in Lecture 7

Narratives

Scenarios

Conversations

Annotations

CRC Cards

2



January 27, 2005 © University of Colorado, Boulder, 2005

Background
During analysis and design, we will

capture requirements,

brainstorm candidate objects and roles,

consider trade-offs and design alternatives,

and make decisions

In order to document these activities, we need various types of 
software artifacts

traditional requirements documents, UML diagrams, Use cases, etc.

The format of these artifacts provide us with a means to structure 
and capture the information we are working so hard to create

3

January 27, 2005 © University of Colorado, Boulder, 2005

User Perspective
In analysis, as much as possible, we want to write our artifacts from 

the standpoint of a user

We will make frequent and consistent use of domain-related 

vocabulary and concepts

We will talk about the software system as a “black box”

We can describe its inputs and its expected outputs but we try to avoid 

discussing how the system will process or produce this information

Use cases are a technique for maintaining this perspective

we identify the different types of users for our system

we then develop tasks for each of the different types of user 

4



January 27, 2005 © University of Colorado, Boulder, 2005

Actor
More formally, a user is represented by an actor

Each use case can have one or more actors involved

An actor can be either a human user or a software system

Actors have two defining characteristics

They are external to the system under design

They take initiative and interact with our system

Typical types of users will include

Customers, “Front-Line” Employees, Administrators, Security 

Personnel, Managers, etc.

5

January 27, 2005 © University of Colorado, Boulder, 2005

Use Cases
Each use case describes a single task for a particular actor

The description typically includes one “success” case and a number 
of extensions that document “exceptional” conditions

In our text book, three different types of use case are presented

narratives, scenarios, and conversations

In lecture 7, we will see a more formal version of the scenario style 
of use case

Use cases are used to capture functional requirements

They can be annotated to also describe non-functional requirements 
but typically the focus is on functional requirements only

6



January 27, 2005 © University of Colorado, Boulder, 2005

Example: Word Processor
Our textbook makes use of a word processor as an example 

domain for analysis and design descriptions

This domain has a number of real world counterparts, but be aware 

that this example is inherently “tool focused”

In the “real world”, you will be tackling larger problem domains, 

understanding a specific problem within that domain, and then 

creating tools (or a single software system) to address that problem

This domain has a number of primary concepts that will emerge 

during analysis and design discussions

Document, Page, Paragraph, Spell Checker, etc.

7

January 27, 2005 © University of Colorado, Boulder, 2005

Use Case Narrative
A narrative is a brief, high-level description of a user task; A 
narrative consists of typically one or two paragraphs of natural 
language text

Narratives are highly informal and typically leave out a lot of details 
that will need to be filled in at a later time

They are useful when discussing a new task for the first time

Example

8

Documents can be saved in different file 

formats. When you save a new document, the 

default file format is used unless another is 

specified. When a Save Document operation 

has completed saving an existing document, 

the file represents accurately the document as 

displayed to the user upon saving



January 27, 2005 © University of Colorado, Boulder, 2005

Narratives Discussed
From the example, we can see that narratives

may not be labeled or otherwise have a title

may not explicitly identify an actor

may use undefined terms

However, they allow for the quick capture of functional 
requirements and identify areas in the domain that require 
additional analysis and/or description

For instance,

What is a file format? What’s the default format? How is a “Save 
Document Operation” invoked?

9

January 27, 2005 © University of Colorado, Boulder, 2005

Use Case Scenario
A scenario describes a specific path (through a software system) 

that a user will take to complete a task

Each step will describe either an action taken by the user (or actor) or 

a response generated by the system under design

As we will see, each step should be kept as simple as possible

Use case scenarios require a particular writing style

We will cover guidelines for writing effective use cases in Lecture 7

The scenario should end with the successful completion of the 

given task

10



January 27, 2005 © University of Colorado, Boulder, 2005

Example: Saving an HTML Doc

11

Save a document to an HTML File

1. The user commands the system to save a file.
2. The system presents a "Save File" dialog box.
3. If the file is being saved for the first time, the system will 
construct a name for the file using a default file extension and 
the first line of text in the document.
4. The user indicates the HTML document type from the 
dialog.
5. The system replaces the default extension with ".html"
6. The user selects a directory for the file.
7. The user clicks the "Save" button in the dialog box.
8. The software warns the user that some formatting 
information may be lost in the transformation to HTML. It 
gives the user a chance to cancel the operation.
9. The user asks for the operation to continue.
10. The software saves the document in HTML format in the 
location specified by the user.

Scenarios will typically 

contain a title and list 

the sequence of 

actions needed to 

successfully complete 

a task

Scenarios can be 

informal (like this 

example) or extremely 

formal

Scenarios can also 

indicate extensions 

that show how to 

handle error conditions

January 27, 2005 © University of Colorado, Boulder, 2005

Use Case Conversations

12

Use case conversations go one step further than scenarios to 
explicitly identify the system responsibilities that are implied by an 
actor’s actions

These responsibilities begin to reveal explicitly the functional 
requirements of the system under design

Recall that the creation of these responsibilities occurs within a highly 
iterative process; do not expect to get the responsibilities “right” the 
first time you write them down

The responsibilities are different from the steps of a scenario since 
they are written from the standpoint of the system NOT the user

As such, conversations will typically include details not found in 
narratives and scenarios



January 27, 2005 © University of Colorado, Boulder, 2005

Example

13

User Actions System Responsibilities

Indicate Save File

Optionally, change
directory

Optionally, change
document format

Indicate OK to Save

Display name of file to be saved

Display contents of current directory,
including files with same file extension
 

If saving file for first time, construct default file 
name

Redisplay contents of directory

Rename file and display new file name

Record document format

Redisplay file extension

Redisplay directory contents to match new 
extension

If formatting information will be lost, notify user

Save document

Redisplay contents if document format changed

Optionally, rename file

Save Document To File User Actions appear on 

the left in abbreviated 

form (when compared to 

a use case narrative or 

scenario)

Responsibilities appear 

on the right and indicate 

things the system must 

do in response to the 

stated action

January 27, 2005 © University of Colorado, Boulder, 2005

Annotations

14

Use cases can be annotated with many different types of 

information, including:

Exceptional Conditions (see Lecture 7)

Policies or Business Rules

Design Notes: additional background information on system concepts

Non-Functional Requirements

Glossaries

We will see other examples in Lecture 7



January 27, 2005 © University of Colorado, Boulder, 2005

CRC Cards
Low fidelity method for brainstorming candidate object models

Information is written down on index cards or post-it notes

Keeps investment in any one object model low

If you don’t like what you are seeing, rip up the cards and try again

CRC stands for “Candidates, Responsibilities, and Collaborators

Affordances

Allows humans to take advantage of spatial dimension when 
performing analysis

Similar cards can be clustered physically, missing elements can be easily 
identified, collaborations can be formed and easily rearranged

Cards can be easily annotated and changed

15

January 27, 2005 © University of Colorado, Boulder, 2005

Two Sides to a Card
An index card has two sides; one is typically blank, the other is lined

On the unlined side of the card, we

indicate the candidate’s name

write an informal description of the purpose of the class

identify this candidate’s role stereotypes

If this candidate participates in a design pattern, indicate its role 
within that pattern

On the lined side of the card, we

again indicate the candidate’s name

list its responsibilities

list its collaborators

16



January 27, 2005 © University of Colorado, Boulder, 2005

Example

17

Document

Purpose: A Document acts as a container 
for graphics and text.

Patterns: Composite-component
Stereotypes: Structurer

Document

Knows contents

Knows storage location

Inserts and removes text,

graphics, and other elements

TextFlow

Unlined Side of Card Lined Side of Card

January 27, 2005 © University of Colorado, Boulder, 2005

Next Lecture
Use Cases in more detail

Present information from Cockburn’s Writing Effective Use Cases

Then, we will move on to chapters 3, 4, 5, and 6 in our textbook

Finding Classes

Finding Responsibilities

Designing Collaborations

Understanding Control Styles

18


