
Lecture 2 and 3: Fundamental Object-Oriented Concepts

1 of 38© University of Colorado, 2005January 13 and 18, 2005

Lecture 2 and 3: Fundamental Object-Oriented
Concepts

Kenneth M. Anderson

January 13, 2005

January 18, 2005

Lecture Goals

Lecture 2 and 3: Fundamental Object-Oriented Concepts

2 of 38© University of Colorado, 2005January 13 and 18, 2005

Lecture Goals

Introduce the basic concepts of object-oriented
analysis/design/programming techniques
A benefit of the object-oriented approach is that the same
concepts appear in all three stages of software development

NOTE: some concepts in this lecture will be reintroduced in
other lectures

That's okay because repetition is good!

Cover a number of examples

Demonstrate these concepts in code

Credit where Credit is Due
Some examples have been taken from

Head First Java by Sierra & Bates, © O'Reilly, 2003

Lecture 2 and 3: Fundamental Object-Oriented Concepts

3 of 38© University of Colorado, 2005January 13 and 18, 2005

Lecture Goals

Overview

Objects
Messages

Classes
Encapsulation

Composition
HAS-A

Inheritance
Abstraction

IS-A

Polymorphism
message passing

polymorphic arguments and return types

Lecture 2 and 3: Fundamental Object-Oriented Concepts

4 of 38© University of Colorado, 2005January 13 and 18, 2005

Overview

Polymorphism

polymorphic arguments and return types

Interfaces and Abstract Classes

Object Identity

Code Examples

Objects

Lecture 2 and 3: Fundamental Object-Oriented Concepts

5 of 38© University of Colorado, 2005January 13 and 18, 2005

Objects

Object-oriented techniques view the world as
consisting of objects

Objects have
state (aka attributes)

behavior (aka methods)

Objects interact by sending messages to one
another
A message is a request by object A to have object B perform
a particular task

When the task is complete, B may pass a value back to A

Note: sometimes B == A (i.e. an object can send a message to itself)

In response to a message, an object may
update its internal state

retrieve a value from its internal state

Lecture 2 and 3: Fundamental Object-Oriented Concepts

6 of 38© University of Colorado, 2005January 13 and 18, 2005

Objects

Objects interact by sending messages to one
another

In response to a message, an object may

retrieve a value from its internal state

create a new object (or set of objects)

delegate part or all of the task to some other object

As a result, objects can be viewed as members of various
object networks

Object networks will work together to perform a particular task for their host
application

As a result, these networks are typically called Collaborations

When drawn
objects appear as rectangles, with their names and types
underlined

objects that know about each other have lines drawn
between them

This connection is known as an object reference, or just, reference

Messages are sent across references

Skippy: Dog

Felix: Cat

Ken: Person

sit()

purr()

Lecture 2 and 3: Fundamental Object-Oriented Concepts

7 of 38© University of Colorado, 2005January 13 and 18, 2005

Objects

When drawn

objects that know about each other have lines drawn
between them

Skippy: Dog

Felix: Cat

Ken: Person

sit()

purr()

Lecture 2 and 3: Fundamental Object-Oriented Concepts

8 of 38© University of Colorado, 2005January 13 and 18, 2005

Objects

Classes

A class is a blueprint for an object
The blueprint specifies the attributes (aka instance
variables) and methods of the class

attributes are things an object of that class knows

methods are things an object of that class does

An object is instantiated (created) from the description
provided by its class

Thus objects are often called instances

Each object has its own values for the attributes of its class
For instance, two objects of the Person class can have different values for

the name attribute

Each object shares the implementation of a class's methods
When a class is defined, a developer provides an implementation for each of
its methods

Lecture 2 and 3: Fundamental Object-Oriented Concepts

9 of 38© University of Colorado, 2005January 13 and 18, 2005

Classes

A class is a blueprint for an object

Each object shares the implementation of a class's methods
When a class is defined, a developer provides an implementation for each of
its methods

Thus object A and B of type Person each share the same method

implementation for the sleep() method; This approach ensures that objects
of the same class behave similarly

Classes can define "class wide" (aka static) attributes and
methods

A static attribute is shared among all instances of a class (each object has the
same value for the static attribute)

A static method does not have to be accessed via an object; you invoke static
methods directly on a class

We will see uses for static attributes and methods throughout the semester

Analogy: Address Book
Each card in an address book is an "instance" or "object" of the

AddressBookCard class

Each card has the same blank fields (attributes);

when you fill out the fields for a particular card, you are setting its state

You can do similar things to each card, i.e., each card has the same set of
methods

Notations

Lecture 2 and 3: Fundamental Object-Oriented Concepts

10 of 38© University of Colorado, 2005January 13 and 18, 2005

Classes

A class is a blueprint for an object

Notations
classes appear as rectangles with potentially multiple compartments

The first compartment contains its name (this name defines a type)

The second compartment contains the class's attributes

The third compartment contains the class's methods

Song

title

artist

setTitle()

setArtist()

play()

classes can be related to other classes in multiple ways

one class can extend another (aka inheritance); indicated with an open triangle on the
superclass

Animal

location

food type

roam()

eat()

makeNoise()

Hippo

eat()

makeNoise()

Lecture 2 and 3: Fundamental Object-Oriented Concepts

11 of 38© University of Colorado, 2005January 13 and 18, 2005

Classes

A class is a blueprint for an object

Notations

classes can be related to other classes in multiple ways

one class can extend another (aka inheritance); indicated with an open triangle on the
superclass

Animal

location

food type

roam()

eat()

makeNoise()

Hippo

eat()

makeNoise()

one class can reference another (aka association); indicated with a simple line

Note: this notation is a graphical shorthand that one or both classes contain an attribute
whose type is the other class

Zoo

addAnimal()

Hippo

eat()

makeNoise()

Zoo

addAnimal()

Hippo ourHippo

shortcut for

Hippo

eat()

makeNoise()

Zoo myZoo

Lecture 2 and 3: Fundamental Object-Oriented Concepts

12 of 38© University of Colorado, 2005January 13 and 18, 2005

Classes

A class is a blueprint for an object

Notations

classes can be related to other classes in multiple ways

one class can reference another (aka association); indicated with a simple line

Note: this notation is a graphical shorthand that one or both classes contain an attribute
whose type is the other class

Zoo

addAnimal()

Hippo

eat()

makeNoise()

Zoo

addAnimal()

Hippo ourHippo

shortcut for

Hippo

eat()

makeNoise()

Zoo myZoo

Lecture 2 and 3: Fundamental Object-Oriented Concepts

13 of 38© University of Colorado, 2005January 13 and 18, 2005

Classes

A class is a blueprint for an object

Notations

classes can be related to other classes in multiple ways

one class can reference another (aka association); indicated with a simple line

Note: this notation is a graphical shorthand that one or both classes contain an attribute
whose type is the other class

Zoo

addAnimal()

Hippo

eat()

makeNoise()

Zoo

addAnimal()

Hippo ourHippo

shortcut for

Hippo

eat()

makeNoise()

Zoo myZoo

associations can indicate the number of instances involved in the relationship; this is
known as multiplicity; an association with no markings is assumed "one to one"; an
association can also indicate directionality

A B
One B with each A; one
A with each B

A B
1 1

Same as above

A B
1 * Zero or more Bs with each

A; one A with each B

A B
* * Zero or more Bs with each

A; ditto As with each B

A B
1 2..5

A B
*

Two to Five Bs with each
A; one A with each B

Zero or more Bs with each
A; B knows nothing about A

associations can also convey semantic information about themselves; In particular,
aggregations indicate that one object contains a set of other objects, think of it as a
whole-part relationship between a class representing an assembly of components and
the classes representing the components

Lecture 2 and 3: Fundamental Object-Oriented Concepts

14 of 38© University of Colorado, 2005January 13 and 18, 2005

Classes

A class is a blueprint for an object

Notations

classes can be related to other classes in multiple ways

one class can reference another (aka association); indicated with a simple line

associations can also convey semantic information about themselves; In particular,
aggregations indicate that one object contains a set of other objects, think of it as a
whole-part relationship between a class representing an assembly of components and
the classes representing the components

Composition

Book

Section

Chapter

Aggregation

Crate

Bottle

aggregation relationships are transitive; if A contains B and B contains C, then A
contains C

aggregation relationships are asymmetric: if A contains B, then B cannot contain A

An variant of aggregation is composition which adds the property of existence
dependency; if A composes B, then if A is deleted, B is deleted

Lecture 2 and 3: Fundamental Object-Oriented Concepts

15 of 38© University of Colorado, 2005January 13 and 18, 2005

Classes

A class is a blueprint for an object

Notations

classes can be related to other classes in multiple ways

one class can reference another (aka association); indicated with a simple line

associations can also convey semantic information about themselves; In particular,
aggregations indicate that one object contains a set of other objects, think of it as a
whole-part relationship between a class representing an assembly of components and
the classes representing the components

Finally, associations can be qualified with information that indicates how objects on the
other end of the association are found

This allows a designer to indicate that the association requires a query mechanism of
some sort; For example, an association between an phonebook object and its entries
might be qualified with a name attribute, indicating that a name is required to locate a
particular entry

EntryPhoneBook name

a class can implement an interface; indicated with a "ball" sticking out of the class

Dog

location

food type

roam()

eat()

makeNoise()

Pet

Lecture 2 and 3: Fundamental Object-Oriented Concepts

16 of 38© University of Colorado, 2005January 13 and 18, 2005

Classes

A class is a blueprint for an object

Notations

classes can be related to other classes in multiple ways

a class can implement an interface; indicated with a "ball" sticking out of the class

Dog

location

food type

roam()

eat()

makeNoise()

Pet

a class can communicate with another class through an interface; indicated via a "ball
and socket" notation

Dog

location

food type

roam()

eat()

makeNoise()

Pet

Person

Lecture 2 and 3: Fundamental Object-Oriented Concepts

17 of 38© University of Colorado, 2005January 13 and 18, 2005

Classes

A class is a blueprint for an object

Notations

classes can be related to other classes in multiple ways

a class can implement an interface; indicated with a "ball" sticking out of the class

Dog

location

food type

roam()

eat()

makeNoise()

Pet

a class can communicate with another class through an interface; indicated via a "ball
and socket" notation

Dog

location

food type

roam()

eat()

makeNoise()

Pet

Person

Composition

Lecture 2 and 3: Fundamental Object-Oriented Concepts

18 of 38© University of Colorado, 2005January 13 and 18, 2005

Classes

Composition

When designing a class, developers have three
ways of dealing with requests made on its objects
One method is to simply deal with a request directly by
implementing code in a method

A second method is to delegate the request to another object
This is called delegation or composition ("composing one object out of
others")

A third method is to let a superclass handle the request
This is called inheritance which we will discuss next

Composition is employed when some other class
already exists to handle a request that might be
made on the class being designed
The "host" class simply creates an instance of the "helper"
class and sends messages to it when appropriate

Lecture 2 and 3: Fundamental Object-Oriented Concepts

19 of 38© University of Colorado, 2005January 13 and 18, 2005

Composition

Composition is employed when some other class
already exists to handle a request that might be
made on the class being designed
The "host" class simply creates an instance of the "helper"
class and sends messages to it when appropriate

These helper objects are typically stored internally to the host

class (i.e. they are made private in the host class)
This means that other objects cannot access them directly, only indirectly via
the host

As such, composition is often referred to as a "HAS-A"
relationship

For instance, a Bathroom HAS-A Bathtub

Advantages
Composition is dynamic (not static); composition
relationships can change at run-time

Not tied to inheritance; in languages that support only single
inheritance, this is important!

Inheritance

Lecture 2 and 3: Fundamental Object-Oriented Concepts

20 of 38© University of Colorado, 2005January 13 and 18, 2005

Composition

Inheritance

Inheritance is a mechanism that allows a designer
to state that one class is an . of several other
classes
The former is called a superclass

The latter are called subclasses

Single inheritance systems only allow a class to
have one parent, or superclass
Multiple inheritance systems allow a class to have multiple
parents

Multiple inheritance is tricky to use and presents several challenges to
designers and programmers, as we will see later in the semester

Subclasses are also called subtypes because they
are "more specific" versions of their superclasses;
they restrict the "legal" values for the type

Lecture 2 and 3: Fundamental Object-Oriented Concepts

21 of 38© University of Colorado, 2005January 13 and 18, 2005

Inheritance

Single inheritance systems only allow a class to
have one parent, or superclass

Subclasses are also called subtypes because they
are "more specific" versions of their superclasses;
they restrict the "legal" values for the type
For instance, Real Numbers ! Integers ! Positive Integers

Or, Component ! Container ! Control ! Button !
Checkbox

Subclasses have an "IS-A" relationship with their
superclass; an IS-A relationship is one directional
A Hippo IS-A Animal makes sense while the reverse does
not

IS-A relationships are transitive
If D is a subclass of C and C is a subclass of B, then D IS-A C and D IS-A B
are both true

Why is it called inheritance?

Lecture 2 and 3: Fundamental Object-Oriented Concepts

22 of 38© University of Colorado, 2005January 13 and 18, 2005

Inheritance

Why is it called inheritance?
The reason is that subclasses inherit attributes and methods
from their superclasses

In particular, all public attributes and methods; private attributes and
methods are not inherited

This enables significant code reuse since shared code can be located in root classes and
shared by all subclasses

Lecture 2 and 3: Fundamental Object-Oriented Concepts

23 of 38© University of Colorado, 2005January 13 and 18, 2005

Inheritance

Why is it called inheritance?
The reason is that subclasses inherit attributes and methods
from their superclasses

In particular, all public attributes and methods; private attributes and
methods are not inherited

This enables significant code reuse since shared code can be located in root classes and
shared by all subclasses

Inheritance Example, Part 1

Lion

makeNoise()

roam()

sleep()

Cat

makeNoise()

roam()

sleep()

Tiger

makeNoise()

roam()

sleep()

Hippo

makeNoise()

roam()

sleep()

Elephant

makeNoise()

roam()

sleep()

Rhino

makeNoise()

roam()

sleep()

Dog

makeNoise()

roam()

sleep()

Wolf

makeNoise()

roam()

sleep()

Inheritance Example, Part 2

Cat
makeNoise()

Tiger
makeNoise()

Rhino
makeNoise()

Animal
sleep()

Feline
roam()

Canine
roam()

Pachyderm
roam()

Wolf
makeNoise()

Wolf

Dog
makeNoise()

Lion
makeNoise()

Elephant
makeNoise()

Hippo
makeNoise()

Lecture 2 and 3: Fundamental Object-Oriented Concepts

24 of 38© University of Colorado, 2005January 13 and 18, 2005

Inheritance

Why is it called inheritance?
The reason is that subclasses inherit attributes and methods
from their superclasses

In particular, all public attributes and methods; private attributes and
methods are not inherited

Inheritance Example, Part 2

Cat
makeNoise()

Tiger
makeNoise()

Rhino
makeNoise()

Animal
sleep()

Feline
roam()

Canine
roam()

Pachyderm
roam()

Wolf
makeNoise()

Wolf

Dog
makeNoise()

Lion
makeNoise()

Elephant
makeNoise()

Hippo
makeNoise()

Thus, a subclass can exhibit all of the behaviors of its superclasses

As such, it can be used anywhere an instance of its superclass can (more on this later)

Lecture 2 and 3: Fundamental Object-Oriented Concepts

25 of 38© University of Colorado, 2005January 13 and 18, 2005

Inheritance

Why is it called inheritance?
The reason is that subclasses inherit attributes and methods
from their superclasses

Thus, a subclass can exhibit all of the behaviors of its superclasses

As such, it can be used anywhere an instance of its superclass can (more on this later)

Furthermore, a subclass can extend its superclass, providing additional
behaviors that make sense for it

In addition, a subclass can override the behaviors provided by the
superclass, altering them to suit its needs

This is both powerful and dangerous, as we will discuss later in the semester

Polymorphism

Lecture 2 and 3: Fundamental Object-Oriented Concepts

26 of 38© University of Colorado, 2005January 13 and 18, 2005

Inheritance

Polymorphism

Object-Oriented programming languages support
polymorphism, which means "many forms"
In practice, this allows code to be written with respect to the
root of an inheritance hierarchy and function correctly if
applied to an instance of one of its subclasses

To begin, consider why invoking a method on an
object is known as "message passing" rather than
say "method invocation"
The reason is that you may think you are sending a message
to the method body of a superclass object and the run-time
engine of the programming language dynamically "re-routes"
the message to the method body of one of that object's
subclasses

Consider the following example
Animal

sleep()

roam()

makeNoise()

Feline

roam()

Lion

makeNoise()

Animal a = new Lion()
a.makeNoise();
a.roam();
a.sleep();

Lecture 2 and 3: Fundamental Object-Oriented Concepts

27 of 38© University of Colorado, 2005January 13 and 18, 2005

Polymorphism

To begin, consider why invoking a method on an
object is known as "message passing" rather than
say "method invocation"
The reason is that you may think you are sending a message
to the method body of a superclass object and the run-time
engine of the programming language dynamically "re-routes"
the message to the method body of one of that object's
subclasses

Consider the following example
Animal

sleep()

roam()

makeNoise()

Feline

roam()

Lion

makeNoise()

Animal a = new Lion()
a.makeNoise();
a.roam();
a.sleep();

We have created a Lion object but we are "looking at it" with a Animal
variable; Without polymorphism, the code above would invoke the method

bodies defined in the Animal class

But with polymorphism, "a.roam()" invokes the method body contained in the

Feline class and "a.makeNoise()" invokes the method body contained in the

Lion class

Lecture 2 and 3: Fundamental Object-Oriented Concepts

28 of 38© University of Colorado, 2005January 13 and 18, 2005

Polymorphism

To begin, consider why invoking a method on an
object is known as "message passing" rather than
say "method invocation"

Consider the following example
Animal

sleep()

roam()

makeNoise()

Feline

roam()

Lion

makeNoise()

Animal a = new Lion()
a.makeNoise();
a.roam();
a.sleep();

Why is this important?
It allows us to write very abstract code that is robust with respect to the
creation of new subclasses. For instance: public void goToSleep(Animal[] zoo) {

 for (int i = 0; i < zoo.length; i++) {
 zoo[i].sleep();
 }
}

In the above code, it doesn't matter what type of animals are contained in the array; we
simply iterate through the array and ask each animal to go to sleep. If a new subclass is

created that overrides the sleep() method, we don't care, the above code will correctly
invoke that overridden method; indeed the above code wouldn't even need to be re-
compiled!

Polymorphism is also supported when used as
arguments to methods or as method return types
In the above goToSleep() method, we passed in a

polymorphic argument, namely an array of Animals; the

code does not care if the array contains Animal instances or
any of its subclasses

Lecture 2 and 3: Fundamental Object-Oriented Concepts

29 of 38© University of Colorado, 2005January 13 and 18, 2005

Polymorphism

Polymorphism is also supported when used as
arguments to methods or as method return types
In the above goToSleep() method, we passed in a

polymorphic argument, namely an array of Animals; the

code does not care if the array contains Animal instances or
any of its subclasses

In addition, we can create methods that return polymorphic
return values. For example: public Animal createRandomAnimal() {

 // code that randomly creates and
 // returns one of Animal's subclasses
}

In the above code, we don't know ahead of time which instance of an

Animal subclass will be returned by the createRandomAnimal() method;
that's okay as long as we are happy to interact with it via the interface

provided by the Animal class

Indeed, we can view inheritance as establishing a
contract by which a root class and any of its
subclasses can be used; if we "code to the
contract" we can create very robust and easy to
maintain software systems

Lecture 2 and 3: Fundamental Object-Oriented Concepts

30 of 38© University of Colorado, 2005January 13 and 18, 2005

Polymorphism

Indeed, we can view inheritance as establishing a
contract by which a root class and any of its
subclasses can be used; if we "code to the
contract" we can create very robust and easy to
maintain software systems
This notion of a class's interface specifying a contract is often
referred to as "design by contract"

In fact, this is why overriding methods in subclasses can be
considered dangerous

if a subclass overrides a superclass method and then alters the behavior of
that method such that it violates the intentions of the superclass, we have
violated the contract specified by the superclass and this can indeed harm
previously abstract and robust code that had been coded to that contract

Consider what would happen if an Animal subclass overrides the sleep() method to

make its instances eat instead; our goToSleep() method above would fail in its goal of
putting all of the Zoo's animals to sleep.

Lecture 2 and 3: Fundamental Object-Oriented Concepts

31 of 38© University of Colorado, 2005January 13 and 18, 2005

Polymorphism

Interfaces and Abstract Classes

There are times when you want to make the
"design by contract" principle explicit rather than
implicit
Abstract classes and Interfaces allow you to do this

An abstract class is simply one which cannot be instantiated

It is designed from the start to be sub-classed

It does this by declaring a number of methods but not providing method implementations
for them; this sets a contract, since a subclass is required to provide implementations for
each abstract method

Abstract classes are useful because they allow you to provide code for some of the
methods (enabling code reuse) while still defining an abstract interface that subclasses
must implement

Consider our Zoo example; while it makes sense to write code like this

Animal a = new Lion(); -- manipulate a Lion object via its Animal superclass

it makes less sense to write code like this:

Animal a = new Animal(); -- what animal is being created/manipulated?

Lecture 2 and 3: Fundamental Object-Oriented Concepts

32 of 38© University of Colorado, 2005January 13 and 18, 2005

Interfaces and Abstract Classes

There are times when you want to make the
"design by contract" principle explicit rather than
implicit
Abstract classes and Interfaces allow you to do this

An abstract class is simply one which cannot be instantiated

Animal a = new Animal(); -- what animal is being created/manipulated?

Thus the Animal class, along with Feline, Pachyderm, and Canine classes, are
good candidates for being abstract classes

Interfaces go one step further and only allow the declaration of abstract
methods; you can not provide any method implementations for any of the
methods declared by an interface

Interfaces are useful when you want to define a role in your software system that could
be played by any number of classes

As we will see, interfaces allow you to address many of the needs that multiple
inheritance was designed for

To demonstrate the utility of interfaces, consider wanting to

modify the Animal class hierarchy to provide operations
related to pets (e.g. play())

We have several options, all with their pros and cons

add pet methods and code to Animal

add pet methods to Animal but make them abstract

add pet methods only in the classes where they belong (no explicit contract)

make a separate Pet superclass and have pets inherit from both Pet and Animal

make a Pet interface and have only pets implement that interface

Lecture 2 and 3: Fundamental Object-Oriented Concepts

33 of 38© University of Colorado, 2005January 13 and 18, 2005

Interfaces and Abstract Classes

Object Identity

All objects have identity
A property that allows us to distinguish one object from
another

Considering two cups from the same set of china, we might
say that they are equal but not identical

They are equal because they have the same set of attributes (size, shape,
color, ...) and they have the same values for each of their attributes

But they are two distinct cups and we can select among them; no two objects
can have the same identity (otherwise they would be the same object)

In object-oriented programming languages, all
objects (i.e. instances) have a unique identifier
This identifier may be, for instance, the object's location in
memory; or a unique integer that was assigned to it when it
was created

This identifier is used to enable a comparison of two
variables to see if they point at the same object, e.g.,
public void compare(String a, String b) {
 if (a == b) {
 System.out.println("identical");
 } else if (a.equals(b)) {
 System.out.println("equal");
 } else {
 System.out.println("not equal");
 }
}

String ken = "Ken Anderson";
String max = "Max Anderson";
compare(ken, max); -- not equal
ken = max;
compare(ken, max); -- identical
max = new String("Max Anderson");
compare(ken, max); -- equal

Lecture 2 and 3: Fundamental Object-Oriented Concepts

34 of 38© University of Colorado, 2005January 13 and 18, 2005

Object Identity

In object-oriented programming languages, all
objects (i.e. instances) have a unique identifier
This identifier may be, for instance, the object's location in
memory; or a unique integer that was assigned to it when it
was created

This identifier is used to enable a comparison of two
variables to see if they point at the same object, e.g.,
public void compare(String a, String b) {
 if (a == b) {
 System.out.println("identical");
 } else if (a.equals(b)) {
 System.out.println("equal");
 } else {
 System.out.println("not equal");
 }
}

String ken = "Ken Anderson";
String max = "Max Anderson";
compare(ken, max); -- not equal
ken = max;
compare(ken, max); -- identical
max = new String("Max Anderson");
compare(ken, max); -- equal

Lecture 2 and 3: Fundamental Object-Oriented Concepts

35 of 38© University of Colorado, 2005January 13 and 18, 2005

Object Identity

In object-oriented programming languages, all
objects (i.e. instances) have a unique identifier

However, identity is also important in analysis and
design
We do not want to create a class for objects that do not have
unique identity in our problem domain

If there is a concept in our problem domain and we can not distinguish
between separate instances of that concept, then we do not need a class for
that concept

Consider people in an elevator; does the elevator care who pushes its buttons?

Consider a cargo tracking application; does the system need to monitor every carrot that
exists inside a bag? how about each bag of carrots inside a crate?

Consider a flight between Denver and Chicago; what uniquely identifies that flight? The
flight number? The plane? The cities? What?

Consider a telephone "chat line"; what constitutes a call?

When performing analysis, you will confront issues like these; you will be
searching for uniquely identifiable objects that help you solve your problem

Lecture 2 and 3: Fundamental Object-Oriented Concepts

36 of 38© University of Colorado, 2005January 13 and 18, 2005

Object Identity

Class Activity

Lets practice using OO concepts to model a few
example scenarios
Scenario 1

A structural computing system is made up of elements. There are two types of elements,
atoms and collections. Atoms are used to store application-specific objects supplied by
clients; Collections are used to group other elements. All elements have a unique id and a
set of attribute value pairs. The name of an attribute is a string but its value can be any
number of different types all of which share a common interface. Elements are stored by a
repository, which manages their persistence and which also can be used to search for
specific elements via their attributes.

Scenario 2
The InfiniTe information integration environment provides a homogenous repository for
performing requirements traceability tasks; InfiniTe contains two types of agents for
manipulating the repository, translators and integrators. Translators are used to import
information into documents; Translators can also be used to export information from
documents out of the repository. Integrators are used to search for relationships between
documents; The information space is partitioned into a number of contexts; All contexts
are a member of another context except for the "global" context which serves as the root.
Documents can be assigned to any number of contexts and can be stored in a number of
different formats. Each format consists of a number of format objects that represent the
content of that document in that format. An anchor is used to indicate an item of interest
within a document; Anchors are context-specific, allowing different items of a document to
be highlighted in different contexts; A relationship is a set of anchors and can thus be used
to link within a document, across documents, and across contexts.

Lecture 2 and 3: Fundamental Object-Oriented Concepts

37 of 38© University of Colorado, 2005January 13 and 18, 2005

Class Activity

Lets practice using OO concepts to model a few
example scenarios

Scenario 2
The InfiniTe information integration environment provides a homogenous repository for
performing requirements traceability tasks; InfiniTe contains two types of agents for
manipulating the repository, translators and integrators. Translators are used to import
information into documents; Translators can also be used to export information from
documents out of the repository. Integrators are used to search for relationships between
documents; The information space is partitioned into a number of contexts; All contexts
are a member of another context except for the "global" context which serves as the root.
Documents can be assigned to any number of contexts and can be stored in a number of
different formats. Each format consists of a number of format objects that represent the
content of that document in that format. An anchor is used to indicate an item of interest
within a document; Anchors are context-specific, allowing different items of a document to
be highlighted in different contexts; A relationship is a set of anchors and can thus be used
to link within a document, across documents, and across contexts.

Lecture 2 and 3: Fundamental Object-Oriented Concepts

38 of 38© University of Colorado, 2005January 13 and 18, 2005

Class Activity

Code Examples

Basic class definition and object creation in Java,
Python, and Objective-C

Inheritance hierarchies and code reuse

Polymorphism and examples of its benefits

Use of Interfaces

Object identity

