
Lecture 30: OO Design
Heuristics

Kenneth M. Anderson

Object-Oriented Analysis and Design

CSCI 6448 - Spring Semester, 2003

April 24, 2003 © University of Colorado, 2003 2

Credit is where Credit is Due

� Some material for this lecture is taken
from
� Object-Oriented Design Heuristics

� by Arthur J. Riel

� ISBN: 0-201-63385-X

� as such, it is copyright, © 1999, by Addison
Wesley

April 24, 2003 © University of Colorado, 2003 3

This Lecture

� Cover OO Design Heuristics
� Classes and Objects

� Topologies of Procedural versus Object-
Oriented Applications

� Relationships between Classes and
Objects

� The Inheritance Relationship

� Multiple Inheritance

April 24, 2003 © University of Colorado, 2003 4

Typical Problem

� I have created an OO design for my
system
� Is it good?
� Bad?
� Somewhere in between?

� Ask an OO “guru”
� A design is good when “it feels right”

� So, how do we know when it feels right?



April 24, 2003 © University of Colorado, 2003 5

One Approach: Design Heuristics

� “The guru runs through a subconscious
list of heuristics, built up through his or
her design experience, over the design.
If the heuristics pass, then the design
feels right, and if they do not pass, then
the design does not feel right”

� from Object-Oriented Design Heuristics
� by Arthur J. Riel

April 24, 2003 © University of Colorado, 2003 6

Riel’s Take

� We would be in a sorry state if we depended
on designers to gain heuristics only through
experience

� Riel’s book documents 61 heuristics that
� he has developed working as a faculty member at

Northeastern University

� and as a consultant on real-world OO A&D
software development projects

� Lets take a look at a some of these heuristics

April 24, 2003 © University of Colorado, 2003 7

Note on Heuristics

� Not all heuristics work together
� Some are directly opposed!

� This occurs because there are always trade-
offs in analysis and design
� Sometimes you want to make a change to reduce

complexity…this may have the consequence that
it also reduces flexiblity

� You will have to decide which heuristic makes the
most sense for your particular context

April 24, 2003 © University of Colorado, 2003 8

Classes and Objects

� Heuristics
� All data should be hidden within its class

� When a developer says
� “I need to make this piece of data public because…”

� They should ask themselves
� “What is it that I’m trying to do with the data and why

doesn’t the class perform that operation for me?”

� Users of a class must be dependent on its public
interface, but a class should not be dependent on
its users

� Why?



April 24, 2003 © University of Colorado, 2003 9

Classes and Objects, continued

� Heuristics
� Minimize the number of messages in the protocol

of a class
� The problem with large public interfaces is that you can

never find what you are looking for…smaller public
interfaces make a class easier to understand and modify

� Do not put implementation details such as
common-code “helper” functions into the public
interface of a class

� Users of a class do not want to see operations in the
public interface that they are not supposed to use

April 24, 2003 © University of Colorado, 2003 10

Classes and Objects, continued

� Heuristics
� Classes should only exhibit nil or export coupling

with other classes, that is, a class should only use
operations in the public interface of another class
or have nothing to do with that class

� This resonates with what we have seen
before on coupling earlier in the semester
� nil coupling: no coupling
� export coupling: make use of public interface
� overt coupling: make use of private details

April 24, 2003 © University of Colorado, 2003 11

Classes and Objects, continued

� Heuristics
� A class should capture one and only one key abstraction

� e.g. a class should be cohesive; Riel defines “key abstraction”
as an element of the problem domain

� Keep related data and behavior in one place
� Similar to the “Move Method” refactoring pattern

� Spin off non-related information into another class
� Similar to the “Extract Class” refactoring pattern (not covered)

� Most of the methods defined on a class should be using
most of the data members most of the time

� All of these heuristics deal with class cohesion

April 24, 2003 © University of Colorado, 2003 12

Topologies of Procedural vs.
OO Applications

� These heuristics help you identify the use of
non-OO structures in OO Applications
� Procedural topologies break an application down

by functions, which then share data structures
� while it is easy to see which functions access which data

structures, it is difficult to go the other way, to see which
data structures are used by which functions

� The problem: a change to a data structure may have
unintended consequences because the developer was
not aware of all the dependencies on the data structure



April 24, 2003 © University of Colorado, 2003 13

Typical problems

� There are two typical problems that
arise when developers familiar with
procedural techniques try to create an
OO design
� The God Class

� A single class drives the application, all other
classes are data holders

� Proliferation of Classes
� Problems with modularization taken too far

April 24, 2003 © University of Colorado, 2003 14

OO Topologies

� Heuristics (God Class)
� Distribute system intelligence horizontally

as uniformly as possible, that is, the top-
level classes in a design should share the
work uniformly

� Do not create god classes/objects in your
system. Be very suspicious of a class
whose name contains “Driver”, “Manager”,
“System”, or “Subsystem”

April 24, 2003 © University of Colorado, 2003 15

OO Topologies

� Heuristics (God Class)
� Beware of classes that have many accessor

methods defined in their public interface. Having
many implies that related data and behavior are
not being kept in one place

� Beware of classes whose methods operate on a
proper subset of the data members of a class.
God classes often exhibit this behavior

April 24, 2003 © University of Colorado, 2003 16

OO Topologies, continued

� God Class Example
� A heat flow regulator needs to decide when

to activate a furnace to keep a room at a
certain temperature

� Consider the following three designs
� Unencapsulated

� Encapsulated

� Distributed Intelligence



April 24, 2003 © University of Colorado, 2003 17

God Class Example

Desired Temp

Actual Temp

Occupancy

Heat Flow
Regulator

Furnace

temp()

temp()

occupied()

Unencapsulated

April 24, 2003 © University of Colorado, 2003 18

God Class Example, cont.

Room

Desired Temp

Actual Temp

Occupancy

Heat Flow
Regulator

Furnace
dtemp()

atemp()

occupied()

Encapsulated

April 24, 2003 © University of Colorado, 2003 19

God Class Example,
continued

Room

Desired Temp

Actual Temp

Occupancy

Heat Flow
Regulator

Furnace
do_you_need_heat()

Distributed Intelligence

Let the room contain the knowledge
of when it needs heat; an alternative
design would allow the room to just
ask the regulator for heat when
do_you_need_heat() is true

April 24, 2003 © University of Colorado, 2003 20

OO Topologies

� Heuristics (Proliferation of Classes)
� Eliminate irrelevant classes from your design

� principle of domain relevance
� often only have get, set, and print methods

� Eliminate classes that are outside the system
� principle of domain relevance again

� Do not turn an operation into a class.
� Be suspicious of any class whose name is a verb or is

derived from a verb, especially those that have only one
piece of meaningful behavior.

� Ask if that piece of meaningful behavior needs to be
migrated to some existing or undiscovered class



April 24, 2003 © University of Colorado, 2003 21

Relationships between
Classes and Objects

� Heuristic
� Minimize the number of classes with which

another class collaborates
� Look for situations where one class communicates with a

group of classes; Ask if its possible to replace the group
with a class that contains the group

� This heuristic is obviously related to coupling and
its supporting what we have said earlier this
semester: aim for systems whose component
parts are highly cohesive and loosely coupled

April 24, 2003 © University of Colorado, 2003 22

Relationships between Classes
and Objects, continued

� Heuristic
� If a class contains objects of another class, then the

containing class should be sending messages to the
contained objects

� that is a containment relationship should always imply a uses
relationship

� Related
� Classes should not contain more objects than a developer

can fit in short-term memory.

� A class must know what it contains, but it should not know its
container (do not depend on your users)

April 24, 2003 © University of Colorado, 2003 23

Inheritance Relationship
� Important not to confuse inheritance and containment

� Heuristics
� Inheritance should be used only to model a specialization

hierarchy
� Containment is black-box

� Inheritance is white-box

� Derived classes must have knowledge of their base class by
definition, but base classes should not know anything about
their derived classes

� All data in a base class should be private; do not use
protected data

April 24, 2003 © University of Colorado, 2003 24

Inheritance Relationship,
continued

� Heuristics
� In theory, inheritance hierarchies should be

deep—the deeper, the better
� In practice, inheritance hierarchies should be no deeper

than an average person can keep in short-term memory.

� All abstract classes must be base classes
� You can’t make instances of an abstract class, so you need

subclasses in order to access any functionality provided by the
abstract class

� Factor the commonality of data, behavior, and/or
interface as high as possible in a class hierarchy

� All base classes should be abstract classes



April 24, 2003 © University of Colorado, 2003 25

Example (to explain last
heuristic)

� Consider a start up company…
� they need a class to store information about

employees
NewEmployee

Salary
Sicktime
MedicalPlan
taxes()
benefits()

April 24, 2003 © University of Colorado, 2003 26

Six Months Later

� The company decides to make a distinction
between new employees and employees that
have been with the company for six months

FullEmployee

Salary
Sicktime
MedicalPlan
DentalPlan
Vacation
Car
taxes()
benefits()

We notice that the full
employee is just a special
case of the new employee

so…

April 24, 2003 © University of Colorado, 2003 27

Lets use inheritance

NewEmployee

Salary
Sicktime
MedicalPlan
taxes()
benefits()

FullEmployee

DentalPlan
Vacation
Car

benefits()

April 24, 2003 © University of Colorado, 2003 28

Adding to NewEmployee
� Assume we decide that all new employees should go

to an orientation session
� we want to add an attribute to track whether an employee

has attended the session
� Can we add this attribute without adding it to the

FullEmployee class? (Full Employees either do not need the
orientation session or already had it)

� The answer is no! (because full employee is a subclass of new
employee)

� This is the danger of inheriting from a concrete class
� (which is the fear that the specialization link between the two

classes will not hold up under extension or refinement of the
design)

� earlier this semester, we referred to this as the “fragile base class”
problem



April 24, 2003 © University of Colorado, 2003 29

The solution

� Have both classes inherit from an abstract
base class, that captures the common
features of both classes

Employee

Salary
Sicktime
MedicalPlan
taxes()
benefits()

FullEmployee

DentalPlan
Vacation
Car

benefits()

NewEmployee

Orientation

April 24, 2003 © University of Colorado, 2003 30

Ramifications

� If you violate this heuristic, as we did with this
example, you may (probably will) end up in a
situation where you need to shift to the
abstract base class design
� Then, you need to introduce a new class, refactor,

and change NewEmployee references to
Employee references, except when access is
needed to the new “orientation” attribute

� Note, also, that this problem of an employee
being in two different states, is perhaps better
solved using the State design pattern

April 24, 2003 © University of Colorado, 2003 31

Multiple Inheritance

� Riel does not advocate the use of
multiple inheritance (its too easy to
misuse it). As such, his first heuristic is
� If you have an example of multiple

inheritance in your design, assume you
have made a mistake and prove otherwise!

� Most common mistake
� Using multiple inheritance in place of

containment

April 24, 2003 © University of Colorado, 2003 32

Multiple Inheritance

� A Second Heuristic
� Whenever there is inheritance in an object-

oriented design, ask yourself two questions:
� 1) Am I a special type of the thing from which I’m

inheriting? 2) Is the thing from which I’m inheriting
part of me?

� A yes to 1) and no to 2) implies the need for
inheritance; A no to 1) and a yes to 2) implies
the need for composition
� Is an airplane a special type of fuselage? No
� Is a fuselage part of an airplane? Yes



April 24, 2003 © University of Colorado, 2003 33

Multiple Inheritance

� A third heuristic
� Whenever you have found a multiple inheritance

relationship in an object-oriented design, be sure
that no base class is actually a derived class of
another base class

� Otherwise you have what Riel calls accidental
multiple inheritance
� Consider the classes “Citrus”, “Food”, and

“Orange”; you can have Orange multiply inherit
from both Citrus and Food…but Citrus is-a-kind-of
Food, and so the proper hierarchy can be
achieved with single inheritence

April 24, 2003 © University of Colorado, 2003 34

Multiple Inheritance

� So, is there a valid use of multiple
inheritance?
� Yes, subtyping for combination

� It is used to define a new class that is a special
type of two other classes where those two base
classes are from different domains

April 24, 2003 © University of Colorado, 2003 35

Multiple Inheritance Example

WoodenDoor

DoorWoodenObject

Is a wooden door a special type of door? Yes
Is a door part of a wooden door? No
Is a wooden door a special type of wooden object? Yes
Is a wooden object part of a door? No
Is a wooden object a special type of door? No
Is a door a special type of wooden object? No
All Heuristics Pass!

April 24, 2003 © University of Colorado, 2003 36

What’s Next?

� Possibly one more (short) lecture on OO
Heuristics
� for the first half of Tuesday’s lecture

� Then, Review for Final
� Final is cumulative
� For in-class students, next Saturday, May 3rd at

4:30 PM in this class
� For CATECS students, I’ll be sending the exam to

your test proctor next week; your exam needs to
be postmarked by May 10th


