
Lecture 29: Test-Driven
Development

Kenneth M. Anderson

Object-Oriented Analysis and Design

CSCI 6448 - Spring Semester, 2003

April 22, 2003 © University of Colorado, 2003 2

Credit where Credit is Due

� Some of the material for this lecture is
taken from “Test-Driven Development”
by Kent Beck; as such some of this
material is copyright © Addison Wesley,
2003

April 22, 2003 © University of Colorado, 2003 3

Goals for this lecture

� Introduce the concept of Test-Driven
Development (TDD)

� Present an example

April 22, 2003 © University of Colorado, 2003 4

Test-Driven Development

� The idea is simple
� No production code is written except to

make a failing test pass

� Implication
� You have to write test cases before you

write code

April 22, 2003 © University of Colorado, 2003 5

Writing Test Cases First

� This means that when you first write a test
case, you may be testing code that does not
exist
� And since that means the test case will not

compile, obviously the test case “fails”
� After you write the skeleton code for the objects

referenced in the test case, it will now compile, but
also may not pass

� So, then you write the simplest code that will then
make the test case pass

April 22, 2003 © University of Colorado, 2003 6

TDD Life Cycle

� The life cycle of test-driven development is
� Quickly add a test
� Run all tests and see the new one fail
� Make a simple change
� Run all tests and see them all pass
� Refactor to remove duplication

� This cycle is followed until you have met your
goal; note that this cycle simply adds testing
to the “add functionality; refactor” loop of
refactoring covered last week

April 22, 2003 © University of Colorado, 2003 7

TDD Life Cycle, continued

� Kent Beck likes to perform TDD within a
Testing Framework, such as JUnit,
within such frameworks
� failing tests are indicated with a “red bar”
� passing tests are shown with a “green bar”

� As such, the TDD life cycle is
sometimes described as
� “red bar/green bar/refactor”

April 22, 2003 © University of Colorado, 2003 8

Example Background:
Multi-Currency Money

� Lets design a system that will allow us to
perform financial transactions with money that
may be in different currencies
� e.g. if we know that the exchange rate from Swiss

Francs to U.S. Dollars is 2 to 1 then we can
calculate expressions like

� 5 USD + 10 CHF = 10 USD

� or
� 5 USD + 10 CHF = 20 CHF

April 22, 2003 © University of Colorado, 2003 9

Starting From Scratch

� Lets start developing such an example
� How do we start?

� TDD recommends writing a list of things we
want to test

� This list can take any format, just keep it
simple

� Example
� $5 + 10 CHF = $10 if rate is 2:1
� $5 * 2 = $10

April 22, 2003 © University of Colorado, 2003 10

First Test

� The first test case looks a bit complex, lets
start with the second
� 5 USD * 2 = 10 USD

� First, we write a test case
public void testMultiplication() {

Dollar five = new Dollar(5);

five.times(2);

assertEquals(10, five.amount)

}

April 22, 2003 © University of Colorado, 2003 11

Discussion on Test Case
public void testMultiplication() {

Dollar five = new Dollar(5);

five.times(2);

assertEquals(10, five.amount)

}

� What benefits does this provide?
� target class plus some of its interface

� we are designing the interface of the Dollar class by
thinking about how we would want to use it

� We have made a testable assertion about the
state of that class after we perform a particular
sequence of operations

April 22, 2003 © University of Colorado, 2003 12

What’s Next?

� We need to update our test list
� The test case revealed some things about Dollar

that we will want to clean up
� We are representing the amount as an integer, which will

make it difficult to represent values like 1.5 USD; how will
we handle rounding of factional amounts?

� Dollar.amount is public; violates encapsulation

� What about side effects?; we first declared our variable
as “five” but after we performed the multiplication it now
equals “ten”

April 22, 2003 © University of Colorado, 2003 13

Update Testing List

� The New List
� 5 USD + 10 CHF = 10 USD

� $5 * 2 = $10

� make “amount” private

� Dollar side-effects?

� Money rounding?

� Now, we need to fix the compile errors
� no class Dollar, no constructor, no method times,

no field amount

April 22, 2003 © University of Colorado, 2003 14

First version of Dollar Class
public class Dollar {

public Dollar(int amount) {

}

public void times(int multiplier) {

}

public int amount;

}

� Now our test compiles and fails!

April 22, 2003 © University of Colorado, 2003 15

Too Slow?

� Note: we did the simplest thing to make the
test compile;

� now we are going to do the simplest thing to
make the test pass

� Is this process too slow?
� Yes, as you get familiar with the TDD life cycle you

will gain confidence and make bigger steps
� No, taking small simple steps avoids mistakes;

beginning programmers try to code too much
before invoking the compiler; they then spend the
rest of their time debugging!

April 22, 2003 © University of Colorado, 2003 16

How do we make the test
pass?

� Here’s one way
public void times(int multiplier) {

amount = 5 * 2;

}

� The test now passes, we received a “green
bar”!

� Now, we need to “refactor to remove
duplication”
� But where is the duplication?
� Hint: its between the Dollar class and the test case

April 22, 2003 © University of Colorado, 2003 17

Refactoring

� To remove the duplication of the test
data and the hard-wired code of the
times method, we think the following

� “We are trying to get a 10 at the end of
our test case and we’ve been given a 5
in the constructor and a 2 was passed
as a parameter to the times method”
� So, lets hook things up

April 22, 2003 © University of Colorado, 2003 18

First version of Dollar Class
public class Dollar {

public Dollar(int amount) {

this.amount = amount;

}

public void times(int multiplier) {

amount = amount * multiplier;

}

public int amount;

}

� Now our test compiles and passes, and we didn’t have to cheat!

April 22, 2003 © University of Colorado, 2003 19

One loop complete!

� Before writing the next test case, we
update our testing list
� 5 USD + 10 CHF = 10 USD

� $5 * 2 = $10

� make “amount” private

� Dollar side-effects?

� Money rounding?

April 22, 2003 © University of Colorado, 2003 20

One more example

� Lets address the “Dollar Side-Effects” item
and then move on to general lessons

� So, lets write the next test case
� When we called the times operation our variable

“five” was pointing at an about whose amount
equaled “ten”; not good

� the times operation had a side effect which was to
change the value of a previous created “value object”

� Think about it, as much as you might like to, you can’t
change a 5 dollar bill into a 500 dollar bill; the 5 dollar bill
remains the same throughout multiple financial
transactions

April 22, 2003 © University of Colorado, 2003 21

Next test case

� The behavior we want is
public void testMultiplication() {

Dollar five = new Dollar(5);

Dollar product = five.times(2);

assertEquals(10, product.amount);

product = five.times(3);
assertEquals(15, product.amount);

assertEquals(5, five.amount);

}

� Note: the last “assert” is redundant; it is implicitly
shown to be true by the second “assert”; I decided
to make it explicit

April 22, 2003 © University of Colorado, 2003 22

Test fails

� The test fails because it won’t compile;
� We need to change the signature of the times

method; previously it returned void and now it
needs to return Dollar
� public Dollar times(int multiplier) {

� amount = amount * multiplier;
� return null;

� }

� The test compiles but still fails; as Kent Beck
likes to say “Progress!”

April 22, 2003 © University of Colorado, 2003 23

Test Passes

� To make the test pass, we need to return a
new Dollar object whose amount equals the
result of the multiplication

public Dollar times(int multiplier) {
return new Dollar(amount *
multiplier);

}

� Test Passes; Cross “Dollar Side Effects?” off
the testing list; second loop complete! (there
was no need to refactor in this case);

April 22, 2003 © University of Colorado, 2003 24

Discussion of the Example
� There is still a long way to go

� only scratched the surface

� But
� we saw the life cycle performed twice
� we saw the advantage of writing tests first
� we saw the advantage of keeping things simple
� we saw the advantage of keeping a testing list to keep track

of our progress

� Plus, as we write new code, we will know if we are
breaking things because our old test cases will fail if
we do; if the old tests stay green, we can proceed
with confidence

April 22, 2003 © University of Colorado, 2003 25

Principles of TDD

� Testing List
� keep a record of where you want to go;

� Beck keeps two lists, one for his current coding session
and one for “later”; You won’t necessarily finish
everything in one go!

� Test First
� Write tests before code, because you probably

won’t do it after
� Writing test cases gets you thinking about the

design of your implementation; does this code
structure make sense? what should the signature
of this method be?

April 22, 2003 © University of Colorado, 2003 26

Principles of TDD, continued

� Assert First
� How do you write a test case?

� By writing its assertions first!

� Suppose you are writing a client/server system
and you want to test an interaction between the
server and the client

� Suppose that for each transaction, some string has to
have been read from the server and that the socket used
to talk to the server should be closed after the
transaction

� Lets write the test case

April 22, 2003 © University of Colorado, 2003 27

Assert First

public void testCompleteTransaction
{
…

assertTrue(reader.isClosed());

assertEquals(“abc”, reply.contents());

}

� Now write the code that will make these
asserts possible

April 22, 2003 © University of Colorado, 2003 28

Assert First, continued
public void testCompleteTransaction {

Server writer = Server(defaultPort(), “abc”)

Socket reader = Socket(“localhost”, defaultPort());

Buffer reply = reader.contents();

assertTrue(reader.isClosed());

assertEquals(“abc”, reply.contents());

}

� Now you have a test case that can drive development; if you
don’t like the interface above for server and socket; then write a
different test case, or refactor the test case, after you get the
above test to pass!

April 22, 2003 © University of Colorado, 2003 29

Principles of TDD, continued
� Evident Data

� How do you represent the intent of your test data
� Even in test cases, we’d like to avoid magic numbers;

consider this rewrite of our second “times” test case

public void testMultiplication() {
Dollar five = new Dollar(5);
Dollar product = five.times(2);

assertEquals(5 * 2, product.amount);

product = five.times(3);

assertEquals(5 * 3, product.amount);

}

� Replace the “magic numbers” with expressions

April 22, 2003 © University of Colorado, 2003 30

Summary

� Test-Driven Design is a “mini” software
development life cycle that helps to
organize coding sessions and make
them more productive
� Write a failing test case

� Make the simplest change to make it pass

� Refactor to remove duplication

� Repeat!

April 22, 2003 © University of Colorado, 2003 31

Reflections

� Test-Driven Design builds on the practices of
Agile Design Methods
� If you decide to adopt it, not only do you “write

code only to make failing tests pass” but you also
get

� an easy way to integrate refactoring into your daily
coding practices

� an easy way to introduce “integration testing/building
your system every day” into your work environment
because you need to run all your tests to make sure that
your new code didn’t break anything; this has the side
effect of making refactoring safe

� courage to try new things, such as unfamiliar design
pattern, because now you have a safety net

April 22, 2003 © University of Colorado, 2003 32

What’s Next?

� OO Heuristics
� Rules of Thumb for distinguishing between good

OO designs and bad OO designs

� Review for the Final

� FCQs
� Your chance to rate me and this course! :-)

� I need a volunteer to pick up the FCQ forms for
me and administer them at the end of class next
Tuesday; anyone?

