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Credit where Credit is Due

� Some of the material for this lecture and
lecture 26 is taken from “Refactoring:
Improving the Design of Existing Code”
by Martin Fowler; as such some
material is copyright © Addison Wesley,
1999
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Last Lecture

� Design Patterns
� Covered Examples

� Iterator

� Flyweight

� Decorator

� Observer

� State

� Composite
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Goals for this lecture

� Introduce the concept of Refactoring
and cover a few examples

� In lecture 28, we will present a tutorial
that will introduce a few additional
refactoring techniques
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What is Refactoring

� Refactoring is the process of changing a
software system such that
� the external behavior of the system does not

change
� e.g. functional requirements are maintained

� but the internal structure of the system is improved

� This is sometimes called
� “Improving the design after it has been written”
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(Very) Simple Example
� Consolidate Duplicate Conditional Fragments (page 243); This

if (isSpecialDeal()) {
total = price * 0.95;
send()

} else {
total = price * 0.98;
send()

}
� becomes this

if (isSpecialDeal()) {
total = price * 0.95;

} else {
total = price * 0.98;

}
send();
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Refactoring is thus Dangerous!

� Manager’s point-of-view
� If my programmers spend time “cleaning

up the code” then that’s less time
implementing required functionality (and
my schedule is slipping as it is!)

� To address this concern
� Refactoring needs to be systematic,

incremental, and safe
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Refactoring is Useful Too
� The idea behind refactoring is to acknowledge that it

will be difficult to get a design right the first time
� and as a program’s requirements change, the design may

need to change
� refactoring provides techniques for evolving the design in small

incremental steps

� Benefits
� Often code size is reduced after a refactoring

� Confusing structures are transformed into simpler structures
� which are easier to maintain and understand
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A “cookbook” can be useful

� “New” Book
� Refactoring: Improving the Design of

Existing Code
� by Martin Fowler (and Kent Beck, John Brant,

William Opdyke, and Don Roberts)

� Similar to the Gang of Four’s Design
Patterns
� Provides “refactoring patterns”
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Principles in Refactoring

� Fowler’s definition
� Refactoring (noun)

� a change made to the internal structure of
software to make it easier to understand and
cheaper to modify without changing its
observable behavior

� Refactoring (verb)
� to restructure software by applying a series of

refactorings without changing its observable
behavior
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Principles, continued

� The purpose of refactoring is
� to make software easier to understand and

modify

� contrast this with performance
optimization
� again functionality is not changed, only

internal structure; however performance
optimizations often involve making code
harder to understand (but faster!)
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Principles, continued

� When you systematically apply
refactoring, you wear two hats
� adding function

� functionality is added to the system without
spending any time cleaning the code

� refactoring
� no functionality is added, but the code is

cleaned up, made easier to understand and
modify, and sometimes is reduced in size
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Principles, continued

� How do you make refactoring safe?
� First, use refactoring “patterns”

� Fowler’s book assigns “names” to refactorings in the
same way that the GoF’s book assigned names to
patterns

� Second, test constantly!
� This ties into the extreme programming paradigm, you

write tests before you write code, after you refactor code,
you run the tests and make sure they all still pass

� if a test fails, the refactoring broke something, but you
know about it right away and can fix the problem before
you move on
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Why should you refactor?
� Refactoring improves the design of software

� without refactoring, a design will “decay” as people make
changes to a software system

� Refactoring makes software easier to understand
� because structure is improved, duplicated code is eliminated,

etc.

� Refactoring helps you find bugs
� Refactoring promotes a deep understanding of the code at

hand, and this understanding aids the programmer in finding
bugs and anticipating potential bugs

� Refactoring helps you program faster
� because a good design enables progress
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When should you refactor?

� The Rule of Three
� Three strikes and you refactor
� refers to duplication of code

� Refactor when you add functionality
� do it before you add the new function to make it

easier to add the function
� or do it after to clean up the code after the function

is added

� Refactor when you need to fix a bug
� Refactor as you do a code review
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Problems with Refactoring

� Databases
� Business applications are often tightly coupled to

underlying databases
� code is easy to change; databases are not

� Changing Interfaces
� Some refactorings require that interfaces be changed

� if you own all the calling code, no problem
� if not, the interface is “published” and can’t change

� Design Changes that are difficult to refactor
� This is why Extreme Programming says that software

engineers need to have “courage”!
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Refactoring: Where to Start?

� How do you identify code that needs to
be refactored?
� Fowler uses an olfactory analogy

(attributed to Kent Beck)

� Look for “Bad Smells” in Code
� A very valuable chapter in Fowler’s book

� It presents examples of “bad smells” and then
suggests refactoring techniques to apply
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Bad Smells in Code

� Duplicated Code
� bad because if you modify one instance of

duplicated code but not the others, you
(may) have introduced a bug!

� Long Method
� long methods are more difficult to

understand; performance concerns with
respect to lots of short methods are largely
obsolete
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Bad Smells in Code

� Large Class
� Large classes try to do too much, which reduces

cohesion

� Long Parameter List
� hard to understand, can become inconsistent

� Divergent Change
� Deals with cohesion; symptom: one type of

change requires changing one subset of methods;
another type of change requires changing another
subset
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Bad Smells in Code

� Shotgun Surgery
� a change requires lots of little changes in a lot of

different classes

� Feature Envy
� A method requires lots of information from some

other class (move it closer!)

� Data Clumps
� attributes that clump together but are not part of

the same class
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Bad Smells in Code

� Primitive Obsession
� characterized by a reluctance to use classes

instead of primitive data types

� Switch Statements
� Switch statements are often duplicated in code;

they can typically be replaced by use of
polymorphism (let OO do your selection for you!)

� Parallel Inheritance Hierarchies
� Similar to Shotgun Surgery; each time I add a

subclass to one hierarchy, I need to do it for all
related hierarchies
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Bad Smells in Code

� Lazy Class
� A class that no longer “pays its way”

� e.g. may be a class that was downsized by refactoring, or
represented planned functionality that did not pan out

� Speculative Generality
� “Oh I think we need the ability to do this kind of

thing someday”

� Temporary Field
� An attribute of an object is only set in certain

circumstances; but an object should need all of its
attributes
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Bad Smells in Code
� Message Chains

� a client asks an object for another object and then asks that
object for another object etc. Bad because client depends on
the structure of the navigation

� Middle Man
� If a class is delegating more than half of its responsibilities to

another class, do you really need it?

� Inappropriate Intimacy
� Pairs of classes that know too much about each other’s

private details
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Bad Smells in Code

� Alternative Classes with Different
Interfaces
� Symptom: Two or more methods do the

same thing but have different signature for
what they do

� Incomplete Library Class
� A framework class doesn’t do everything

you need
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Bad Smells in Code

� Data Class
� These are classes that have fields, getting and

setting methods for the fields, and nothing else;
they are data holders, but objects should be about
data AND behavior

� Refused Bequest
� A subclass ignores most of the functionality

provided by its superclass

� Comments (!)
� Comments are sometimes used to hide bad code

� “…comments often are used as a deodorant” (!)
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The Catalog

� The refactoring book has 72 refactoring
patterns!
� I’m only going to cover a few of the more

common ones, including
� Extract Method
� Replace Temp with Query
� Move Method
� Replace Conditional with Polymorphism
� Introduce Null Object
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Extract Method

� You have a code fragment that can be
grouped together

� Turn the fragment into a method whose
name explains the purpose of the
fragment

� Example, next slide
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Extract Method, continued
void printOwing(double amount) {

printBanner()
//print details
System.out.println(“name: ” + _name);
System.out.println(“amount: ” + amount);

}
=============================================
void printOwing(double amount) {

printBanner()
printDetails(amount)

}

void printDetails(double amount) {
System.out.println(“name: ” + _name);
System.out.println(“amount: ” + amount);

}
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Replace Temp with Query

� You are using a temporary variable to
hold the result of an expression

� Extract the expression into a method;
Replace all references to the temp with
the expression. The new method can
then be used in other methods

� Example, next slide
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Replace Temp with Query,
continued
double basePrice = _quantity * _itemPrice
if (basePrice > 1000)

return basePrice * 0.95;
else

return basePrice * 0.98;
==============================
if (basePrice() > 1000)

return basePrice() * 0.95;
else

return basePrice() * 0.98;
…
double basePrice() {

return _quantity * _itemPrice;
}
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Move Method

� A method is using more features (attributes
and operations) of another class than the
class on which it is defined

� Create a new method with a similar body in
the class it uses most. Either turn the old
method into a simple delegation, or remove it
altogether

� An example of move method is available on
the class website (it can’t fit into the slides!)
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Replace Conditional with
Polymorphism

� You have a conditional that chooses
different behavior depending on the
type of an object

� Move each “leg” of the conditional to an
overriding method in a subclass. Make
the original method abstract
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Replace Conditional with
Polymorphism, continued
double getSpeed() {

switch (_type) {
case EUROPEAN:

return getBaseSpeed();
case AFRICAN:

return getBaseSpeed() - getLoadFactor() * _numberOfCoconuts;
case NORWEGIAN_BLUE:

return (_isNailed) ? 0 : getBaseSpeed(_voltage);
}
throw new RuntimeException(“Unreachable”)

}
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Replace Conditional with
Polymorphism, continued

Bird

getSpeed()

European

getSpeed()

African

getSpeed()

Norwegian Blue

getSpeed()

See example available from class website for more details.
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Introduce Null Object

� Repeated checks for a null value

� Replace the null value with a null object

if (customer == null) {
name = “occupant”

} else {
name = customer.getName()

}
if (customer == null) {
…

Customer

getName()

Null Customer

getName()
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Introduce Null Object
if (customer.isNull()) {

name = “occupant”
} else {

name = customer.getName()
}
===========================
public class nullCustomer {

public String getName() { return “occupant”;}
}
===========================
customer.getName();

The conditional goes away entirely!!


