
Lecture 27: Refactoring

Kenneth M. Anderson

Object-Oriented Analysis and Design

CSCI 6448 - Spring Semester, 2003

April 15, 2003 © University of Colorado, 2003 2

Credit where Credit is Due

� Some of the material for this lecture and
lecture 26 is taken from “Refactoring:
Improving the Design of Existing Code”
by Martin Fowler; as such some
material is copyright © Addison Wesley,
1999

April 15, 2003 © University of Colorado, 2003 3

Last Lecture

� Design Patterns
� Covered Examples

� Iterator

� Flyweight

� Decorator

� Observer

� State

� Composite

April 15, 2003 © University of Colorado, 2003 4

Goals for this lecture

� Introduce the concept of Refactoring
and cover a few examples

� In lecture 28, we will present a tutorial
that will introduce a few additional
refactoring techniques



April 15, 2003 © University of Colorado, 2003 5

What is Refactoring

� Refactoring is the process of changing a
software system such that
� the external behavior of the system does not

change
� e.g. functional requirements are maintained

� but the internal structure of the system is improved

� This is sometimes called
� “Improving the design after it has been written”

April 15, 2003 © University of Colorado, 2003 6

(Very) Simple Example
� Consolidate Duplicate Conditional Fragments (page 243); This

if (isSpecialDeal()) {
total = price * 0.95;
send()

} else {
total = price * 0.98;
send()

}
� becomes this

if (isSpecialDeal()) {
total = price * 0.95;

} else {
total = price * 0.98;

}
send();

April 15, 2003 © University of Colorado, 2003 7

Refactoring is thus Dangerous!

� Manager’s point-of-view
� If my programmers spend time “cleaning

up the code” then that’s less time
implementing required functionality (and
my schedule is slipping as it is!)

� To address this concern
� Refactoring needs to be systematic,

incremental, and safe

April 15, 2003 © University of Colorado, 2003 8

Refactoring is Useful Too
� The idea behind refactoring is to acknowledge that it

will be difficult to get a design right the first time
� and as a program’s requirements change, the design may

need to change
� refactoring provides techniques for evolving the design in small

incremental steps

� Benefits
� Often code size is reduced after a refactoring

� Confusing structures are transformed into simpler structures
� which are easier to maintain and understand



April 15, 2003 © University of Colorado, 2003 9

A “cookbook” can be useful

� “New” Book
� Refactoring: Improving the Design of

Existing Code
� by Martin Fowler (and Kent Beck, John Brant,

William Opdyke, and Don Roberts)

� Similar to the Gang of Four’s Design
Patterns
� Provides “refactoring patterns”

April 15, 2003 © University of Colorado, 2003 10

Principles in Refactoring

� Fowler’s definition
� Refactoring (noun)

� a change made to the internal structure of
software to make it easier to understand and
cheaper to modify without changing its
observable behavior

� Refactoring (verb)
� to restructure software by applying a series of

refactorings without changing its observable
behavior

April 15, 2003 © University of Colorado, 2003 11

Principles, continued

� The purpose of refactoring is
� to make software easier to understand and

modify

� contrast this with performance
optimization
� again functionality is not changed, only

internal structure; however performance
optimizations often involve making code
harder to understand (but faster!)

April 15, 2003 © University of Colorado, 2003 12

Principles, continued

� When you systematically apply
refactoring, you wear two hats
� adding function

� functionality is added to the system without
spending any time cleaning the code

� refactoring
� no functionality is added, but the code is

cleaned up, made easier to understand and
modify, and sometimes is reduced in size



April 15, 2003 © University of Colorado, 2003 13

Principles, continued

� How do you make refactoring safe?
� First, use refactoring “patterns”

� Fowler’s book assigns “names” to refactorings in the
same way that the GoF’s book assigned names to
patterns

� Second, test constantly!
� This ties into the extreme programming paradigm, you

write tests before you write code, after you refactor code,
you run the tests and make sure they all still pass

� if a test fails, the refactoring broke something, but you
know about it right away and can fix the problem before
you move on

April 15, 2003 © University of Colorado, 2003 14

Why should you refactor?
� Refactoring improves the design of software

� without refactoring, a design will “decay” as people make
changes to a software system

� Refactoring makes software easier to understand
� because structure is improved, duplicated code is eliminated,

etc.

� Refactoring helps you find bugs
� Refactoring promotes a deep understanding of the code at

hand, and this understanding aids the programmer in finding
bugs and anticipating potential bugs

� Refactoring helps you program faster
� because a good design enables progress

April 15, 2003 © University of Colorado, 2003 15

When should you refactor?

� The Rule of Three
� Three strikes and you refactor
� refers to duplication of code

� Refactor when you add functionality
� do it before you add the new function to make it

easier to add the function
� or do it after to clean up the code after the function

is added

� Refactor when you need to fix a bug
� Refactor as you do a code review

April 15, 2003 © University of Colorado, 2003 16

Problems with Refactoring

� Databases
� Business applications are often tightly coupled to

underlying databases
� code is easy to change; databases are not

� Changing Interfaces
� Some refactorings require that interfaces be changed

� if you own all the calling code, no problem
� if not, the interface is “published” and can’t change

� Design Changes that are difficult to refactor
� This is why Extreme Programming says that software

engineers need to have “courage”!



April 15, 2003 © University of Colorado, 2003 17

Refactoring: Where to Start?

� How do you identify code that needs to
be refactored?
� Fowler uses an olfactory analogy

(attributed to Kent Beck)

� Look for “Bad Smells” in Code
� A very valuable chapter in Fowler’s book

� It presents examples of “bad smells” and then
suggests refactoring techniques to apply

April 15, 2003 © University of Colorado, 2003 18

Bad Smells in Code

� Duplicated Code
� bad because if you modify one instance of

duplicated code but not the others, you
(may) have introduced a bug!

� Long Method
� long methods are more difficult to

understand; performance concerns with
respect to lots of short methods are largely
obsolete

April 15, 2003 © University of Colorado, 2003 19

Bad Smells in Code

� Large Class
� Large classes try to do too much, which reduces

cohesion

� Long Parameter List
� hard to understand, can become inconsistent

� Divergent Change
� Deals with cohesion; symptom: one type of

change requires changing one subset of methods;
another type of change requires changing another
subset

April 15, 2003 © University of Colorado, 2003 20

Bad Smells in Code

� Shotgun Surgery
� a change requires lots of little changes in a lot of

different classes

� Feature Envy
� A method requires lots of information from some

other class (move it closer!)

� Data Clumps
� attributes that clump together but are not part of

the same class



April 15, 2003 © University of Colorado, 2003 21

Bad Smells in Code

� Primitive Obsession
� characterized by a reluctance to use classes

instead of primitive data types

� Switch Statements
� Switch statements are often duplicated in code;

they can typically be replaced by use of
polymorphism (let OO do your selection for you!)

� Parallel Inheritance Hierarchies
� Similar to Shotgun Surgery; each time I add a

subclass to one hierarchy, I need to do it for all
related hierarchies

April 15, 2003 © University of Colorado, 2003 22

Bad Smells in Code

� Lazy Class
� A class that no longer “pays its way”

� e.g. may be a class that was downsized by refactoring, or
represented planned functionality that did not pan out

� Speculative Generality
� “Oh I think we need the ability to do this kind of

thing someday”

� Temporary Field
� An attribute of an object is only set in certain

circumstances; but an object should need all of its
attributes

April 15, 2003 © University of Colorado, 2003 23

Bad Smells in Code
� Message Chains

� a client asks an object for another object and then asks that
object for another object etc. Bad because client depends on
the structure of the navigation

� Middle Man
� If a class is delegating more than half of its responsibilities to

another class, do you really need it?

� Inappropriate Intimacy
� Pairs of classes that know too much about each other’s

private details

April 15, 2003 © University of Colorado, 2003 24

Bad Smells in Code

� Alternative Classes with Different
Interfaces
� Symptom: Two or more methods do the

same thing but have different signature for
what they do

� Incomplete Library Class
� A framework class doesn’t do everything

you need



April 15, 2003 © University of Colorado, 2003 25

Bad Smells in Code

� Data Class
� These are classes that have fields, getting and

setting methods for the fields, and nothing else;
they are data holders, but objects should be about
data AND behavior

� Refused Bequest
� A subclass ignores most of the functionality

provided by its superclass

� Comments (!)
� Comments are sometimes used to hide bad code

� “…comments often are used as a deodorant” (!)

April 15, 2003 © University of Colorado, 2003 26

The Catalog

� The refactoring book has 72 refactoring
patterns!
� I’m only going to cover a few of the more

common ones, including
� Extract Method
� Replace Temp with Query
� Move Method
� Replace Conditional with Polymorphism
� Introduce Null Object

April 15, 2003 © University of Colorado, 2003 27

Extract Method

� You have a code fragment that can be
grouped together

� Turn the fragment into a method whose
name explains the purpose of the
fragment

� Example, next slide

April 15, 2003 © University of Colorado, 2003 28

Extract Method, continued
void printOwing(double amount) {

printBanner()
//print details
System.out.println(“name: ” + _name);
System.out.println(“amount: ” + amount);

}
=============================================
void printOwing(double amount) {

printBanner()
printDetails(amount)

}

void printDetails(double amount) {
System.out.println(“name: ” + _name);
System.out.println(“amount: ” + amount);

}



April 15, 2003 © University of Colorado, 2003 29

Replace Temp with Query

� You are using a temporary variable to
hold the result of an expression

� Extract the expression into a method;
Replace all references to the temp with
the expression. The new method can
then be used in other methods

� Example, next slide

April 15, 2003 © University of Colorado, 2003 30

Replace Temp with Query,
continued
double basePrice = _quantity * _itemPrice
if (basePrice > 1000)

return basePrice * 0.95;
else

return basePrice * 0.98;
==============================
if (basePrice() > 1000)

return basePrice() * 0.95;
else

return basePrice() * 0.98;
…
double basePrice() {

return _quantity * _itemPrice;
}

April 15, 2003 © University of Colorado, 2003 31

Move Method

� A method is using more features (attributes
and operations) of another class than the
class on which it is defined

� Create a new method with a similar body in
the class it uses most. Either turn the old
method into a simple delegation, or remove it
altogether

� An example of move method is available on
the class website (it can’t fit into the slides!)

April 15, 2003 © University of Colorado, 2003 32

Replace Conditional with
Polymorphism

� You have a conditional that chooses
different behavior depending on the
type of an object

� Move each “leg” of the conditional to an
overriding method in a subclass. Make
the original method abstract



April 15, 2003 © University of Colorado, 2003 33

Replace Conditional with
Polymorphism, continued
double getSpeed() {

switch (_type) {
case EUROPEAN:

return getBaseSpeed();
case AFRICAN:

return getBaseSpeed() - getLoadFactor() * _numberOfCoconuts;
case NORWEGIAN_BLUE:

return (_isNailed) ? 0 : getBaseSpeed(_voltage);
}
throw new RuntimeException(“Unreachable”)

}

April 15, 2003 © University of Colorado, 2003 34

Replace Conditional with
Polymorphism, continued

Bird

getSpeed()

European

getSpeed()

African

getSpeed()

Norwegian Blue

getSpeed()

See example available from class website for more details.

April 15, 2003 © University of Colorado, 2003 35

Introduce Null Object

� Repeated checks for a null value

� Replace the null value with a null object

if (customer == null) {
name = “occupant”

} else {
name = customer.getName()

}
if (customer == null) {
…

Customer

getName()

Null Customer

getName()

April 15, 2003 © University of Colorado, 2003 36

Introduce Null Object
if (customer.isNull()) {

name = “occupant”
} else {

name = customer.getName()
}
===========================
public class nullCustomer {

public String getName() { return “occupant”;}
}
===========================
customer.getName();

The conditional goes away entirely!!


