
Lecture 26: Design Patterns
(part 2)

Kenneth M. Anderson

Object-Oriented Analysis and Design

CSCI 6448 - Spring Semester, 2003

April 10, 2003 © Univeristy of Colorado, 2003 2

Last Lecture

� Design Patterns
� Background and Core Concepts

� Examples
� Singleton, Factory Method, and Adapter

April 10, 2003 © Univeristy of Colorado, 2003 3

Goals of Lecture

� Cover Additional Design Patterns
� State
� Iterator
� Flyweight
� Decorator
� Observer
� Composite

April 10, 2003 © Univeristy of Colorado, 2003 4

State

� Intent
� Allow an object to alter its behavior when

its internal state changes

� Motivation
� TCPConnection example
� A TCPConnection class must respond to

an open operation differently based on its
current state: established, closed, listening,
etc.

April 10, 2003 © Univeristy of Colorado, 2003 5

State, continued
� Applicability

� Use State when
� an object’s behavior depends on its state
� operations have large, multipart conditional statements that depend on

the object’s state

� Participants
� Context

� defines the interface of interest to clients
� maintains an instance of a ConcreteState subclass

� State
� defines an interface for encapsulating the behavior associated with a

particular state of the Context

� ConcreteState
� each subclass of State implements a different behavior that implements

the correct behavior for a particular state

April 10, 2003 © Univeristy of Colorado, 2003 6

State, continued

� Structure
� Page 306 of Design Patterns

� Collaborations
� Context delegates state-specific requests to the

current ConcreteState object
� A context may pass itself as an argument to the

State object handling the request
� Context is the primary interface of clients
� Either Context or ConcreteState subclasses can

decide which state succeeds another and under
what circumstances

April 10, 2003 © Univeristy of Colorado, 2003 7

State, continued

� Consequences
� State localizes state-specific behavior and

partitions behavior for different states

� State makes state transitions explicit

� State objects can be shared

� Example
� We saw an example of the state pattern

back in Lecture 20

April 10, 2003 © Univeristy of Colorado, 2003 8

Iterator

� Intent
� Provide a way to access the elements of an

aggregate object (e.g. a collection class)
sequentially without exposing its underlying
representation

� Also Known As
� Cursor

� Motivation
� A collection may have multiple ways of being

“traversed”; Iterator lets you keep traversal
operations out of the core collection interface

April 10, 2003 © Univeristy of Colorado, 2003 9

Iterator, continued
� Applicability

� Use the Iterator pattern
� to access an aggregate object’s contents without exposing its internal

representation
� to support multiple traversals of aggregate objects
� to provide a uniform interface for traversing different aggregate structures (that is,

to support polymorphic iteration)

� Participants
� Iterator

� defines an interface for accessing and traversing elements

� ConcreteIterator
� implements Iterator interface and keeps track of current position within collection

� Aggregate
� defines an interface for creating an Iterator (factory method)

� ConcreteAggregate
� implements the factory method

April 10, 2003 © Univeristy of Colorado, 2003 10

Iterator, continued
� Structure

� page 259 of Design Patterns

� Collaborations
� A ConcreteIterator keeps track of the current object in the

aggregate and can compute the next object in the traversal

� Consequences
� The Iterator pattern supports multiple traversals for each

collection (e.g. inorder, preorder, postorder for trees)

� Iterators simplify Aggregate interface

� More than one traversal can occur on a single collection at
once; as long as the traversal is read-only

April 10, 2003 © Univeristy of Colorado, 2003 11

Iterator, continued

� Implementation
� The Iterator interface in the Java Collection

classes
� java.util.Iterator (interface)

� java.util.List (interface)

� java.util.LinkedList (class)

� java.util.ListIterator (interface)
� implementing subclass is private within List class

April 10, 2003 © Univeristy of Colorado, 2003 12

Flyweight

� Intent
� Use sharing to support large numbers of fine-

grained objects efficiently

� Motivation
� Imagine a text editor that creates one object per

character in a document

� For large documents, that is a lot of objects!
� but for simple text documents, there are only 26 letters,

10 digits, and a handful of punctuation marks being
referenced by all of the individual character objects

April 10, 2003 © Univeristy of Colorado, 2003 13

Flyweight, continued

� Applicability
� Use flyweight when all of the following are true

� An application uses a large number of objects
� Storage costs are high because of the sheer quantity of

objects
� Most object state can be made extrinsic
� Many groups of objects may be replaced by relatively few

shared objects once extrinsic state is removed
� The application does not depend on object identity. Since

flyweight objects may be shared, identity tests will return
true for conceptually distinct objects

April 10, 2003 © Univeristy of Colorado, 2003 14

Flyweight, continued
� Participants

� Flyweight
� declares an interface through which flyweights can receive and

act on extrinsic state

� ConcreteFlyweight
� implements Flyweight interface and adds storage for intrinsic

state

� UnsharedConcreteFlyweight
� not all flyweights need to be shared; unshared flyweights

typically have children which are flyweights

� FlyweightFactory
� creates and manages flyweight objects

� Client
� maintains extrinsic state and stores references to flyweights

April 10, 2003 © Univeristy of Colorado, 2003 15

Flyweight, continued

� Collaborations
� Data that a flyweight needs to process must be

classified as intrinsic or extrinsic
� Intrinsic is stored with client; Extrinsic is stored with client

� Clients should not instantiate ConcreteFlyweights
directly

� Consequences
� Storage savings is a tradeoff between total

reduction in number of objects verses the amount
of intrinsic state per flyweight and whether or not
extrinsic state is computed or stored

� greatest savings occur when extrinsic state is computed
April 10, 2003 © Univeristy of Colorado, 2003 16

Flyweight, continued

� See code example (available from class
website)

� Simple implementation of flyweight
pattern
� Focus is on factory and flyweight rather

than on client

� Demonstrates how to do simple sharing of
characters

April 10, 2003 © Univeristy of Colorado, 2003 17

Decorator

� Intent
� Attach additional responsibilities to an object

dynamically. Decorators provide a flexible
alternative to subclassing for extending
functionality

� Also Known As
� Wrapper

� Motivation
� Sometimes we want to add responsibilities to

individual objects, not to an entire class (like
adding scrollbars to windows in GUI toolkits)

April 10, 2003 © Univeristy of Colorado, 2003 18

Decorator, continued
� Applicability

� Use Decorator
� to add responsibilities to individual objects dynamically
� for responsibilities that can be withdrawn
� when extension by subclassing is impractical

� Participants
� Component

� defines interface of objects to decorate

� ConcreteComponent
� defines an object to decorate

� Decorator and ConcreteDecorator
� Decorator maintains a reference to component and defines an interface

that conforms to Component’s interface; ConcreteDecorator adds
responsibilities to the component

April 10, 2003 © Univeristy of Colorado, 2003 19

Decorator, continued
� Structure

� Page 177 of Design Patterns

� Collaborations
� Decorator forwards requests to its Component object. It may

optionally perform additional operations before and after
forwarding the request

� Consequences
� More flexibility than static inheritance
� Avoids feature-laden classes high up in the hierarchy
� A decorator and its component are not identical
� Lots of little objects

April 10, 2003 © Univeristy of Colorado, 2003 20

Observer

� Intent
� Define a one-to-many dependency between

objects so that when one object changes states,
all its dependents are notified and updated
automatically

� Also Known As
� Dependants, Publish-Subscribe

� Motivation
� Need a way to update dependant objects while

avoiding tight coupling
� User Interface Example

April 10, 2003 © Univeristy of Colorado, 2003 21

Observer, continued
� Applicability

� Use Observer
� when an abstraction has two aspects, one dependent on the other
� when a change to one object requires changing others and you don’t

know in advance who needs to change
� when an object should notify objects but should not make assumptions

about which objects need to be notified

� Participants
� Subject

� provides interface to add and delete observers

� Observer
� defines an updating interface for dependants

� ConcreteSubject
� stores the state being observed

� ConcreteObserver
� stores state that must be consistent with observed state

April 10, 2003 © Univeristy of Colorado, 2003 22

Observer, continued

� Structure
� page 294 of Design Patterns

� Collaborations
� ConcreteSubject notifies observers whenever it

changes its observed state

� After receiving a notification, ConcreteObserver
gets state from ConcreteSubject

� see sequence diagram on page 295 of Design Patterns

April 10, 2003 © Univeristy of Colorado, 2003 23

Observer, continued

� Consequences
� Abstract coupling between Subject and Observer

� Subjects do not know the concrete subclasses of their
observers

� Support for broadcast communication
� Subject does not know who is listening

� Unexpected updates
� Change in state may update an unintended object, one

we didn’t suspect was an observer, or should only be
observing at well-defined times

April 10, 2003 © Univeristy of Colorado, 2003 24

Composite

� Intent
� Compose objects into tree structures to represent

part-whole hierarchies

� Composite lets clients treat individual objects and
compositions of objects uniformly

� Motivation
� Image programs that allow graphic primitives to be

grouped into collections of objects
� Many operations are shared, such as move(), copy(),

paste(), draw(), etc.

April 10, 2003 © Univeristy of Colorado, 2003 25

Composite, continued

� Applicability
� Use Composite when

� you want to represent part-whole hierarchies
� you want clients to be able to ignore the

difference between compositions of objects and
individual objects

� Structure
� page 164 of Design Patterns

April 10, 2003 © Univeristy of Colorado, 2003 26

Composite, continued
� Participants

� Component
� declares the shared interface
� declares child management operations

� empty methods for leaves

� defines an interface to retrieve parent

� Leaf
� implements shared interface

� Composite
� stores children
� implements shared interface by delegating to children
� implements child management operations

� Client
� Manipulates objects using the Component interface

April 10, 2003 © Univeristy of Colorado, 2003 27

Composite, continued

� Collaborations
� Client uses the Component interface to

interact with all objects

� If the recipient is a leaf, then the request is
handled directly

� If the recipient is a composite, then the
request is delegated to its children

April 10, 2003 © Univeristy of Colorado, 2003 28

Composite, continued
� Consequences

� Composite allows primitive objects and composite objects to
be treated transparently

� especially since the child management functions are defined in
the Component interface

� Composite simplifies code in the client
� It makes it easy to add new types of “leaves”

� nothing needs to change to add a new type of component (not
even the client)

� Disadvantage: Difficult to create composites that have only
certain types of leaves; you need to subclass the Composite
class and use run-time checks to make sure that only “legal”
children are added to it

