
Lecture 25: Design Patterns

Kenneth M. Anderson

Object-Oriented Analysis and Design

CSCI 6448 - Spring Semester, 2003

April 8, 2003 © University of Colorado, 2003 2

Pattern Resources

� Pattern Languages of Programming
� Technical conference on Patterns

� The Portland Pattern Repository
� http://c2.com/ppr/

� Patterns Homepage
� http://hillside.net/

� Go to page then click on “Patterns tab”

April 8, 2003 © University of Colorado, 2003 3

Design Patterns
� Addison-Wesley book published in 1995

� Erich Gamma
� Richard Helm
� Ralph Johnson
� John Vlissides
� ISBN 0-201-63361-2

� Known as “The Gang of Four”
� Presents 23 Design Patterns
� Material in this lecture and lecture 26 is drawn from

this book, and is thus copyright © 1995 by Addison-
Wesley Publishing Company

April 8, 2003 © University of Colorado, 2003 4

What are Patterns?
� Christopher Alexander talking about buildings and

towns
� “Each pattern describes a problem which occurs over and

over again in our environment, and then describes the core
of the solution to that problem, in such a way that you can
use this solution a million times over, without ever doing it
the same way twice”

� Alexander, et al., A Pattern Language. Oxford University
Press, 1977

April 8, 2003 © University of Colorado, 2003 5

Patterns, continued

� Patterns can have different levels of
abstraction

� In Design Patterns (the book),
� Patterns are not classes

� Patterns are not frameworks

� Instead, Patterns are descriptions of
communicating objects and classes that are
customized to solve a general design problem in a
particular context

April 8, 2003 © University of Colorado, 2003 6

Patterns, continued

� So, patterns are formalized solutions to
design problems
� They describe techniques for maximizing

flexibility, extensibility, abstraction, etc.

� These solutions can typically be
translated to code in a straightforward
manner

April 8, 2003 © University of Colorado, 2003 7

Elements of a Pattern
� Pattern Name

� More than just a handle for referring to the pattern

� Each name adds to a designer’s vocabulary
� Enables the discussion of design at a higher abstraction

� The Problem
� Gives a detailed description of the problem addressed by the

pattern

� Describes when to apply a pattern
� Often with a list of preconditions

April 8, 2003 © University of Colorado, 2003 8

Elements of a Pattern, continued

� The Solution
� Describes the elements that make up the

design, their relationships, responsibilities,
and collaborations

� Does not describe a concrete solution
� Instead a template to be applied in many

situations

April 8, 2003 © University of Colorado, 2003 9

Elements of a Pattern, continued

� The consequences
� Describes the results and tradeoffs of

applying the pattern
� Critical for evaluating design alternatives

� Typically include
� Impact on flexibility, extensibility, or portability

� Space and Time tradeoffs

� Language and Implementation issues

April 8, 2003 © University of Colorado, 2003 10

Design Pattern Template

� Pattern Name and
Classification
� Creational

� Structural

� Behavioral

� Intent

� Also Known As

� Motivation

� Applicability

� Structure

� Participants

� Collaborations

� Consequences

� Implementation

� Sample Code

� Known Uses

� Related Patterns

April 8, 2003 © University of Colorado, 2003 11

Examples

� Singleton

� Factory Method

� Adapter

April 8, 2003 © University of Colorado, 2003 12

Singleton

� Intent
� Ensure a class has only one instance, and

provide a global point of access to it

� Motivation
� Some classes represent objects where

multiple instances do not make sense or
can lead to a security risk (e.g. Java
security managers)

April 8, 2003 © University of Colorado, 2003 13

Singleton, continued

� Applicability
� Use the Singleton pattern when

� there must be exactly one instance of a class,
and it must be accessible to clients from a well-
known access point

� when the sole instance should be extensible by
subclassing, and clients should be able to use
an extended instance without modifying their
code

April 8, 2003 © University of Colorado, 2003 14

Singleton Structure

Singleton

static Instance() {return uniqueInstance}
public SingletonOperation()
public GetSingletonData()

private static uniqueInstance
private singletonData

April 8, 2003 © University of Colorado, 2003 15

Singleton, continued

� Participants
� Just the Singleton class

� Collaborations
� Clients access a Singleton instance solely through

Singleton’s Instance operation

� Consequences
� Controlled access to sole instance

� Reduced name space (versus global variables)

� Permits a variable number of instances (if desired)

April 8, 2003 © University of Colorado, 2003 16

Implementation
import java.util.Date;

public class Singleton {

 private static Singleton theOnlyOne;
 private Date d = new Date();

 private Singleton() {
 }
 public static Singleton instance() {
 if (theOnlyOne == null) {
 theOnlyOne = new Singleton();
 }
 return theOnlyOne;
 }
 public Date getDate() {

 return d;

 }

}

April 8, 2003 © University of Colorado, 2003 17

Using our Singleton Class
public class useSingleton {

 public static void main(String[] args) {

 Singleton a = Singleton.instance();

 Singleton b = Singleton.instance();

 System.out.println("" + a.getDate());

 System.out.println("" + b.getDate());

 System.out.println("" + a);

 System.out.println("" + b);

 }

}

Output:

Sun Apr 07 13:03:34 MDT 2002

Sun Apr 07 13:03:34 MDT 2002
Singleton@136646

Singleton@136646

April 8, 2003 © University of Colorado, 2003 18

Names of Classes in Patterns

� Are the class names specified in a pattern
required?
� No!

� Consider an environment where a system has access to
only one printer

� Would you want to name the class that provides access
to the printer “Singleton”??!!

� No, you would want to name it something like “Printer”!

� On the other hand
� Incorporating the name of the classes of the pattern can

help to communicate their use to designers
� “Oh, I see you have a “PrinterObserver” class, are you

using the Observable design pattern?

April 8, 2003 © University of Colorado, 2003 19

Names, continued

� So, if names are unimportant, what is?
� Structure!

� We can name our Singleton class
anything so long as it
� has a private or protected constructor

� need a protected constructor to allow
subclasses

� has a static “instance” operation to retrieve
the single instance

April 8, 2003 © University of Colorado, 2003 20

Factory Method

� Intent
� Define an interface for creating an object, but let

subclasses decide which class to instantiate

� Also Known As
� Virtual Constructor

� Motivation
� Frameworks define abstract classes, but any particular

domain needs to use specific subclasses; how can the
framework create these subclasses?

� See example on page 107 of the design patterns book

April 8, 2003 © University of Colorado, 2003 21

Factory Method, continued

� Applicability
� Use the Factory Method pattern when

� a class can’t anticipate the class of objects it must create
� a class wants its subclasses to specify the objects it

creates
� classes delegate responsibility to one of several helper

subclasses, and you want to localize the knowledge of
which helper subclass is the delegate

� In a nutshell
� A “factory” object creates “products” for a client;

the type of products created depends on the
subclass of the factory object used; the client
knows only about the factory, not its subclasses

April 8, 2003 © University of Colorado, 2003 22

Factory Method, continued

� Participants
� Product

� Defines the interface of objects the factory method
creates

� Concrete Product
� Implements the Product Interface

� Creator
� declares the Factory method which returns an object of

type Product

� Concrete Creator
� overrides the factory method to return an instance of a

Concrete Product

April 8, 2003 © University of Colorado, 2003 23

Factory Method Structure

Product

ConcreteProduct

Creator

ConcreteCreator
FactoryMethod()

FactoryMethod()
AnOperation()

«instantiate»

…
product = FactoryMethod()

…

return new ConcreteProduct()

April 8, 2003 © University of Colorado, 2003 24

Factory Method
Consequences

� Factory methods eliminate the need to bind
application-specific classes into your code

� Potential disadvantage is that clients must
use subclassing in order to create a particular
ConcreteProduct
� In single-inherited systems, this constrains your

partitioning choices

� Provides hooks for subclasses
� Connects parallel class hierarchies

� See page 110 of the design patterns book

April 8, 2003 © University of Colorado, 2003 25

Implementation

� See code example (available on class
website)

� A factory can return balloons of different
colors
� The factory hides several specific creators

and cycles among them to create balloons

� A client retrieves multiple balloons and
displays their colors

April 8, 2003 © University of Colorado, 2003 26

Adapter
� Intent

� Convert the interface of a class into another interface clients
expect. Adapter lets classes work together that could not
otherwise because of incompatible interfaces

� Also Known As
� Wrapper

� Motivation
� Sometimes a toolkit class that is designed for reuse is not

reusable because its interface does not match the domain-
specific interface an application requires

� Page 139-140 of Design Patterns provides an example

April 8, 2003 © University of Colorado, 2003 27

Adapter, continued

� Applicability
� Use the Adapter pattern when

� you want to use an existing class, and its
interface does not match the one you need

� you want to create a reusable class that
cooperates with unrelated or unforeseen
classes

April 8, 2003 © University of Colorado, 2003 28

Adapter, continued

� Participants
� Target

� defines the domain-specific interface that Client uses

� Client
� collaborates with objects conforming to the Target

interface

� Adaptee
� defines an existing interface that needs adapting

� Adapter
� adapts the interface of Adaptee to the Target interface

April 8, 2003 © University of Colorado, 2003 29

Adapter Structure

Client
Target
Request()

Adaptee
SpecificRequest()

Adapter
Request()

Class Adapter

SpecificRequest()

April 8, 2003 © University of Colorado, 2003 30

Adapter Structure

Client
Target
Request()

Adapter
Request()

Adaptee
SpecificRequest()

Object Adapter

adaptee.SpecificRequest()
adaptee

April 8, 2003 © University of Colorado, 2003 31

Adapter, continued

� Collaborations
� Clients call operations on an Adapter instance. In

turn, the adapter calls Adaptee operations that
carry out the request

� Consequences
� Class Adapters

� adapts Adaptee to Target by committing to concrete
Adapter class; Adapter can override Adaptee behavior

� Object Adapters
� lets a single Adapter work with many Adaptees; makes it

harder to override Adaptee behavior

April 8, 2003 © University of Colorado, 2003 32

Implementation

� See code example (available on class
website)

� Very simple implementation of the
object adapter but it shows the basic
idea
� object adapter chosen simply because I

don’t like multiple inheritance :-)

