
Lecture 20: Responsibility-Driven Design,
Part 3

Kenneth M. Anderson

Object-Oriented Analysis and Design

CSCI 6448 - Spring Semester, 2003

March 20, 2003 © University of Colorado, 2003 2

Credit where Credit is Due

� Some material presented in this lecture
is taken from Object Design: Roles,
Responsibilities, and Collaborations. ©
Addison Wesley/Pearson Education,
2003. ISBN 0-201-37943-0

March 20, 2003 © University of Colorado, 2003 3

Responsibility-Driven Design

� Last Lecture
� Designing Collaborations

� This Lecture
� Designing Control Styles

� Or, how is the decision making processes
of your application organized?

March 20, 2003 © University of Colorado, 2003 4

Application Control and Control Style

� How does an application respond to events?
How does it make decisions?
� Typically via “control centers”; groups of objects

that are in charge of the decision making process

� Control style affects how intelligence is
distributed among objects within a control
center
� A control style can be centralized, delegated,

dispersed, or somewhere in between



March 20, 2003 © University of Colorado, 2003 5

Centralized Control
� A centralized control style places major decision

making responsibilities in a small number of objects;
those stereotyped as controllers
� Most objects used by controllers are devoid of any significant

decision making responsibilities
� they are told what to do and they do it!

� A variation of this style is the clustered control style;
here decision-making responsibilities are assigned to
several controllers, each working on a small part of
the overall control
� Typically there is then one controller which “controls” each

cluster; “one controller to rule them all and in the darkness
bind them!” (obligatory Lord of the Rings reference!)

March 20, 2003 © University of Colorado, 2003 6

Problems
� With centralized control, generally one object (the

controller) makes most of the important decisions
� This is good since it centralizes control logic, but…

� several problems can occur including
� Control logic can get overly complex
� All other classes may become information holders

� this means that most responsibilities move to the controller
which then loses cohesion

� Controllers can become dependent on the contents of their
information holders

� If the information changes, the controller has to change; if there
are too many information holders, the controller becomes highly
coupled

March 20, 2003 © University of Colorado, 2003 7

Delegated Control

� In a delegated control style, the
designer makes a concerted effort to
delegate decisions, not only between
controllers, but also to objects that have
other responsibilities
� Decisions made by controllers are limited

to deciding what should be done; other
objects then perform that task

March 20, 2003 © University of Colorado, 2003 8

Advantages
� Delegated control is more “object oriented” and leads

to several benefits
� Delegating coordinators tend to know about fewer objects

than dominating controllers
� This leads to a loosely coupled system
� Changes typically affect fewer objects

� Dialogs are higher-level
� Collaborations between coordinators and the objects they

coordinate tend to be higher level requests rather than simple
requests to store and retrieve data

� e.g. calculateTaxes() versus getTaxRate()

� It is easier to divide design work among team members
� More objects with interesting responsibilities makes it easy to

divide design and implementation work among the
development team



March 20, 2003 © University of Colorado, 2003 9

Problems
� Too much distribution of responsibility can lead to

weak objects and weak collaborations
� Carried to extremes, a delegated control style can result in

objects that do not “know” or “do” enough to be interesting

� Look for these warning signs
� Small service provides used by a single client; the service

was factored out of a controller and should be merged back
in

� Complicated collaborations between delegator and
delegates; this can happen when not enough context is
passed with a request

� Lots of collaborations but not much work getting done

March 20, 2003 © University of Colorado, 2003 10

Dispersed Control

� A dispersed control style distributes
decision-making responsibilities across
many objects involved in a task
� Benefits

� Decision making logic becomes very simple

� Problems
� May become hard to identify where a particular

decision is being made in a system

March 20, 2003 © University of Colorado, 2003 11

Developing Control Centers

� In all but the simplest of applications, you will
have multiple control centers to design

� Control design is important when controlling
� user-initiated events
� complex processes
� work within a specific object neighborhood
� external software systems

� In each of these situations
� pick a control style, and work on specific

responsibilities and collaborations

March 20, 2003 © University of Colorado, 2003 12

Mixing Styles
� However, do not try to use the same control style

everywhere
� Develop a control style suited to each control situation; ask

these questions
� How are decisions made in this situation?
� Who should make them?
� What decisions should be delegated?
� What patterns of delegation should be established and

repeated

� It is best to design collaborations so similar things
work similarly
� For instance, use cases that handle the same kind of user

interactions should use the same control style even if the
participating objects differ



March 20, 2003 © University of Colorado, 2003 13

Example: Speak For Me
� Imagine a software system designed to help a severely disabled

user, one who is paralyzed, blind, and cannot speak
� All this person can do is blink their eyes to indicate “yes” and “no”

� This system allows this user to compose and send messages by
speaking the alphabet and allowing the user to select letters to
form into words and words into sentences
� The user can indicate words by selecting a “space”, which is

presented after the user has selected at least one letter

� Several two letter words are used as commands: ES for “end
sentence”, SM for “send message”, etc.

� This system is similar to software used by Stephen Hawking, the
famous physicist, although he can see and can move his fingers

March 20, 2003 © University of Colorado, 2003 14

Example: Build a Message
� We are going to design a control center for Speak

For Me that manages the process of building a
message
� Speak For Me speaks letters until one is selected; when a

letter is selected, it is spoken and then added to the current
word

� Based on the current message, Speak For Me can try to
guess the user’s intentions

� e.g. it can make guesses at the word that the user is trying to
spell; if so it speaks the words and allows the user to select the
correct word

� it can also make guesses at the sentence that the user is trying
to speak; e.g. it stores all previous sentences composed by the
user for re-use; if so, it speaks sentences and allows the user
to select the correct sentence

March 20, 2003 © University of Colorado, 2003 15

Example: Actions and
Responsibilities

� When composing a message:
� If letter selected, speak letter, add to letter to

current word
� If space selected, speak space, add word to end

of current sentence, start new word
� If word selected, speak word, add to end of current

sentence, start new word
� If sentence selected, speak sentence, add

sentence to message, start new sentence with
new word

� Repeat until a command is issued
� Processing a command is a separate use case

March 20, 2003 © University of Colorado, 2003 16

Example: MessageBuilder

� Candidate: Message Builder

� Purpose: The MessageBuilder is a hub of
activity in the application. It coordinates the
timing, the presentation of guesses, and the
message construction. It centralizes control
and is a core element of the control
architecture

� Stereotype: Controller or Coordinator?



March 20, 2003 © University of Colorado, 2003 17

Example: Architecture

Presenter Selector

MessageBuilder Timer

AlphabetVocabulary

SentenceDictionary

Word Letter

Message UserProfile

View

Controller

Model
Arrow represents
that MessageBuilder
talks to potentially
all Model classes

March 20, 2003 © University of Colorado, 2003 18

Example: Control Strategy

� When Timer “ticks” MessageBuilder presents
its next “guess” via the Presenter
� e.g. based on the current message, it may decide

that the user is trying to spell the word “Chicago”;
if so, it will have the presenter speak this word

� When a selection comes in, MessageBuilder
will process it
� Adding letters to word, words to sentences,

sentences to the message, or executing
commands as needed

March 20, 2003 © University of Colorado, 2003 19

Example: Initial Implementation

� See the initial attempt at coding the
MessageBuilder, using a centralized control
style, in the mb1 directory of the example
source code
� All source code is available from the class website

� All decision logic is placed in the
MessageBuilder; other objects have very
simple responsibilities
� A lot of code was not shown; it would consist of

more complex if statements to handle all of the
various states

March 20, 2003 © University of Colorado, 2003 20

Discussion

� While all control logic is centralized; the
number of states is causing the code to be
very complex, with lots of conditionals, use of
boolean flags, and the like

� What we want is a way to make the
MessageBuilder alter its behavior based on
its current state
� State Pattern to the rescue!

� It is designed for exactly this context!



March 20, 2003 © University of Colorado, 2003 21

State Pattern (I)

� Problem: How to design an object to alter its
behavior based on internal state changes

� Context: Sometimes you need to make
complex decisions about what to do based on
the current state of an object. An object’s
state can be represented by a number of
different objects; The object must change its
behavior based on the “current state”

March 20, 2003 © University of Colorado, 2003 22

State Pattern (II)
� Forces: Complex, multipart conditional expressions

are often used to decide how to proceed; but this can
result in code that is hard to maintain

� Solution: Instead of writing code that specifically
checks what state an object is in before deciding how
to react, design one new class for each possible state
that the object can be in. Reassign responsibilities for
handling events to each state object; delegate all
responsibilities to the state objects and pass in
whatever context is needed for them to do their work

March 20, 2003 © University of Colorado, 2003 23

Example: States needed for
MessageBuilder
� Idling - not doing anything
� Guessing Letters Only - new word has started
� Guessing Letters and Space - at least one letter has

been added to current word, so add “space” as an
option

� Guessing Letters, Words, and Sentences - at least
two letters have been added to current word

� Ending Word - space or word has been selected;
check to see if word is command

� Execute Command - command detected
� Suspended - allows user to “pause” message

building
March 20, 2003 © University of Colorado, 2003 24

Example: Code for Three States

� See state-based implementation in the mb2
directory of the example source code
� This is an example of a clustered control style;

MessageBuilder has delegated decision making
logic to each individual state

� These three states contain simpler logic but
handle everything that was handled in the
original code example
� Be sure to look at the simplified implementation of

MessageBuilder



March 20, 2003 © University of Colorado, 2003 25

Example: Switching Styles

� Even though we make use of the State
design pattern, we are still using a centralized
control style
� And we mentioned that a delegated control style

was more “object oriented”; since it typically leads
to a situation where intelligence and
responsibilities are more evenly distributed

� So, lets see how we might use a delegated
control style in Speak For Me

March 20, 2003 © University of Colorado, 2003 26

Example: Making “Letter”
Smarter

� Currently, our state keeps track of what the
current selection is;
� GuessingLettersOnly for instance knows that the

current selection is a Letter and so it can just
directly add it to the message, without checking its
type

� But, why not shift the responsibility of adding the
selection to the message to the selection itself

� after all each object is aware of its own identity; if the
selection is a Letter, it knows that it has to call
“addLetter() to add itself to the Message object

March 20, 2003 © University of Colorado, 2003 27

First, define a new role

� Since SpeakForMe will eventually make
“guesses” about words and sentences, we
will define a role called Guess
� A Guess is responsible for knowing how to

present itself and knowing how to add itself to a
message

� We will make Letter a subclass of Guess and
eventually we’ll define classes called Word
and Sentence that will also be subclasses of
Guess; (we could also make Guess an
interface)

March 20, 2003 © University of Colorado, 2003 28

Second, simplify MessageBuilder

� Since each selection (a Guess) knows how to
add itself to a message, the code for
handleSelection() in MessageBuilder
becomes
� public void handleSelection() {

� selection.addTo(message);

� }

� We’ve completely delegated the responsibility
of adding the selection to the current
message to the selections themselves



March 20, 2003 © University of Colorado, 2003 29

Delegating Guessing

� The rest of the logic in the old version of
MessageBuilder dealt with coming up with a
guess
� we only showed code for guessing the next

letter…eventually we would have to add code that
would try to guess the word a user was trying to
spell, or code that would try to guess the sentence
a user was trying to create

� We want to have some other object do the
guessing, that way all MessageBuilder has to
do is ask for the next guess and present it

March 20, 2003 © University of Colorado, 2003 30

Blackboard Pattern (I)

� To take care of guessing, we will make use of
another pattern, called Blackboard
� In Blackboard you have four roles

� A blackboard object that stores a particular message
� A knowledge source that looks at the current message

and makes a “bid” about how the current message
should be modified

� A bid that stores information about proposed
modifications and the value associated with each of them

� A controller that asks the knowledge sources to make
bids on the current blackboard and then selects one of
the bids based on some sort of evaluation process

� We’ll use “highest bidder wins” :-)

March 20, 2003 © University of Colorado, 2003 31

Blackboard Pattern (II)
� In SpeakForMe, we will have the following objects

play these roles
� Guesser - plays the role of the controller; MessageBuilder

delegates the “guessing responsibility” to this object
� Alphabet - plays the role of a knowledge source; it has to

come up with a letter to present to the user based on the
current value of the message

� eventually we can add additional knowledge sources, such as a
Dictionary to guess words, and a SentenceHistory to guess
sentences, etc.

� Message - plays the role of the Blackboard
� Bid - plays the role of the Bid (pretty original!)

March 20, 2003 © University of Colorado, 2003 32

Example: Guesser Architecture

:Guesser :Alphabet

:Dictionary

:SentenceHistory

m :Message

nextGuess(m)

*bidOn(m)

<perform queries>
bid

pickHighestBid()
guess



March 20, 2003 © University of Colorado, 2003 33

Example: Simplified MessageBuilder

� With this new collaboration, we can eliminate
all of the state objects from the clustered
implemenation of MessageBuilder

� handleTimeout becomes
public void handleTimeout() {

selection = guesser.nextGuess(message);
selection.presentTo(presenter)

}

� MessageBuilder is no longer a controller; it is
simply a coordinator; all decision logic has
been delegated to other classes!

March 20, 2003 © University of Colorado, 2003 34

Discussion and Summary
� Advantages of Delegated Style

� Control architecture stays the same in the presence of a new
“knowledge source”

� Simply add new type of Guess and a new KnowledgeSource; nothing
else changes

� In a centralized control style:
� the logic of the controller would change to become aware of the new

type of Guess and the conditional logic of the knowledge source
� In the clustered style, a new state would encapsulate this knowledge, but

the other states would have to change to take advantage of the new state
transitions

� Summary
� Responsibility Driven Design provides a design technique based on

assigning responsibilities to object neighborhoods that adopt
various control styles to implement the functional and non-
functional requirements of a software system


