
Lecture 18: Responsibility-Driven Design,
Part 1

Kenneth M. Anderson

Object-Oriented Analysis and Design

CSCI 6448 - Spring Semester, 2003

March 13, 2003 © University of Colorado, 2003 2

Credit where Credit is Due

� Some material presented in this lecture is
taken from Object Design: Roles,
Responsibilities, and Collaborations. ©
Addison Wesley/Pearson Education, 2003.
ISBN 0-201-37943-0

� Some additional material is drawn from Craig
Larman’s Applying UML and Patterns. ©
Craig Larman, 2002 ISBN 0-13-092569-1

March 13, 2003 © University of Colorado, 2003 3

Background
� Responsibility-Driven Design is a design technique

for transforming analysis models into a design that
can be implemented by developers

� During analysis, it makes use of use cases/scenarios
to capture functional requirements and CRC cards to
identify an initial class model

� It then develops a design by stepping through a
process of assigning responsibilities to these
candidates until all functional requirements have
been covered

March 13, 2003 © University of Colorado, 2003 4

RDD Life Cycle (I)

� Product Definition and Planning
� Define project goals

� Responsibility-Driven Analysis
� System Definition

� Develop system architecture

� Identify initial system concepts

� Identify system responsibilities



March 13, 2003 © University of Colorado, 2003 5

RDD Life Cycle (II)

� Responsibility-Driven Analysis (cont.)
� Detailed Description

� Specify development environment
� Write use cases/scenarios
� Analyze/identify non-functional requirements
� Document system dynamics

� Use activity diagrams to show constraints between
use cases

� User Interface Design
� Develop screen specifications and navigation model

March 13, 2003 © University of Colorado, 2003 6

RDD Life Cycle (III)

� Responsibility-Driven Analysis (cont.)
� Object Analysis

� Identify domain objects using CRC cards
� Document additional concepts and terms

� Such as a domain’s business rules

� Exploratory Design
� Associate domain objects with execution-oriented

objects
� Assign responsibilities to objects

� Again use CRC cards

� Develop initial collaboration model
� Sequence/Collaboration Diagrams

March 13, 2003 © University of Colorado, 2003 7

RDD Life Cycle (IV)
� Design Refinement

� Justify trade-offs/Document design decisions
� Distribute application control

� Identify control styles
� Identify patterns of decision making and delegation in the object

model

� Refine static/dynamic associations between classes
� Class Diagram

� Revise model to make it more maintainable, flexible, and
consistent

� Use design patterns, simplify interfaces, etc.

� Document design using UML

� Ready for Implementation!

March 13, 2003 © University of Colorado, 2003 8

Additional Background

� RDD develops an analysis model using
CRC cards

� As covered previously, on the unlined
side of the index card, we are supposed
to specify a candidate’s name, purpose,
patterns, and stereotypes
� In lecture 11, I left the exact nature of

stereotypes undefined; lets define them
before looking at RDD in more depth



March 13, 2003 © University of Colorado, 2003 9

Stereotypes (I)

� A well-defined object supports a clearly
defined role
� some roles are application-specific

� such as an image import plug-in for Adobe
Photoshop

� but some roles are generic; RDD refers to
generic roles as “role stereotypes” or just
“stereotypes”

� do not confuse this concept with UML’s
stereotype extension mechanism

March 13, 2003 © University of Colorado, 2003 10

Stereotypes (II)
� Information Holder

� knows and provides information

� Structurer
� maintains relationships between objects and information about

those relationships

� Service Provider
� performs work for other objects

� Coordinator
� reacts to events by delegating tasks to others

� Controller
� makes decisions and closely directs others’ actions

� Interfacer
� transforms information and requests between different parts of our

system

March 13, 2003 © University of Colorado, 2003 11

Stereotypes (III)

� In general an object can have more
than one stereotype, but…
� the idea is to try to assign the stereotype

that captures the major role of a class
� for instance, any class that has an attribute is

technically an “information holder”

� but if that class mainly responds to events, you
should classify it as a coordinator

March 13, 2003 © University of Colorado, 2003 12

Stereotypes (IV)
� Why are stereotypes useful?

� Stereotypes can help to identify responsibilities for a class
� For instance, a service provider will have responsibilities for

“doing” or “performing” specific services
� You’ll be able to classify responsibilities

� “Oh, that is something that an interfacer must do!”

� Thinking in terms of stereotypes can make you a better
designer

� You will become comfortable partitioning an application into
objects that play these roles

� Can be used to test the completeness of a design
� “I haven’t created any controllers yet, I can’t possibly be

done!”

� You will learn how certain roles relate to design patterns



March 13, 2003 © University of Colorado, 2003 13

Responsibilities

� The core of RDD is assigning responsibilities
to objects
� So, what is a responsibility?

� Responsibilities are general statements about
software objects; they include
� The actions an object performs

� The knowledge an object maintains

� Major decisions an object makes that affect others

March 13, 2003 © University of Colorado, 2003 14

Example: Teakettle (I)

� Consider the design of a teakettle
� What is the right form for a teakettle?

� A teakettle holds water that can be heated until boiling
� People can safely pick up a teakettle when it is filled with

boiling water and pour a cup of tea
� By convention, a teakettle whistles when the water boils

� These characteristics can be restated as
responsibilities

� Pour contents without spilling or splashing
� Hold water that can be heated until boiling
� Is safe to hold and carry while water is hot
� Notify when boiling occurs

March 13, 2003 © University of Colorado, 2003 15

Example: Teakettle (II)
� Did we get this right?
� It depends on the boundaries we have set for the problem; in

conventional terms we have the bases covered
� But some designers like to redefine the problem: “Its not the

teakettle that needs to be designed, but the method of heating
the water!”
� Here the teakettle becomes part of the context, rather than the

“form being designed”
� This type of thinking might lead to innovation such as an “instant

hot” unit that heats tap water as it flows through it

� The trick is to know when to indulge this type of thinking;
sometimes it leads to innovation but sometimes it adds
unnecessary complexity and expense
� For most people, the conventional teakettle works just fine!

March 13, 2003 © University of Colorado, 2003 16

Finding Responsibilities

� Use Cases
� Identify system responsibilities stated or implied

by use cases
� plug gaps in use cases by developing lower-level

responsibilities (and classes)

� Follow “what if…then…and how” chains
� Identify stereotypical responsibilities
� Identify responsibilities to support

relationships between candidates
� Patterns (!)



March 13, 2003 © University of Colorado, 2003 17

Use Cases and Responsibilities

� Use cases describe our software from the
perspective of an outside user
� They don’t tell how something is accomplished
� We need to “bridge this gap” by transforming these

descriptions into explicit statements about actions,
information, or decision-making responsibilities

� This is similar to Maciaszek’s step of finding system activities
after creating use cases

� Bridging the Gap
� Identify things the system does and the information it

manages
� Restate these things as responsibilites
� Break them down into smaller parts if necessary and assign

them to appropriate objects
March 13, 2003 © University of Colorado, 2003 18

Example: University Enrollment

� A student can register online for classes by filling out
and submitting an online registration form for
approval. While filling out the registration form, a
student can browse course schedules, cross-listed
courses, audit degree requirements, and update
personal and financial aid information. The student
can also access the “waitlist class” and “drop class”
functions

� The system should identify problems as courses are
added, such as time conflicts, full classes, lack of
prerequisites, etc.

March 13, 2003 © University of Colorado, 2003 19

Example: Responsibilities
� Generate and display an online registration form (something

needs to know the structure of the form and how to display it)

� Provide feedback as the student enters course selections about
conflicts or problems (Something needs to check that a student
can sign up for a course; a component is also needed to display
feedback about the results)

� Provide capabilities for browsing, auditing degree requirements,
and updating personal/financial information (browsing sounds
like a big responsibility, auditing sounds like a complex process,
updating personal information will require specific boundary,
controller, and domain classes)

� …

March 13, 2003 © University of Colorado, 2003 20

Example: Specific Scenario

� 1. Student logs in
� 2. System verifies that student is eligible to

register and displays reg. form
� 3. Student adds courses to schedule
� 4. System verifies schedule and returns

approved courses for confirmation
� 5. Student confirms schedule
� 6. System updates course rosters and

confirms successful registration



March 13, 2003 © University of Colorado, 2003 21

Example: More responsibilities

� Check that student is eligible to register
� From step 2

� Add student to course rosters
� From step 6

� Display confirmation of registration
� From step 6

� Validate each course in schedule meets
constraints such as prerequisites, etc.
� From step 4

March 13, 2003 © University of Colorado, 2003 22

Example: Filling in gaps

� These directly derived responsibilities have
gaps; ask questions and identify additional
responsibilities
� How are prerequisites specified?

� A relationship between course objects?
� Possibly need structurer to handle this

� What states does a student’s schedule go through?
“build/submit/confirm”

� Who manages this life cycle? The schedule object?

� Does registering happen in “real time”?
� How much help should the system give to a

student when things go wrong?

March 13, 2003 © University of Colorado, 2003 23

“What if” scenarios

� Asking “what if” questions can lead to lines of
reasoning that identify additional
responsibilities
� What if the database goes down before my

schedule is confirmed?
� Is the student out of luck? Can the schedule be saved

elsewhere and retrieved for later submission?

� This type of thinking will lead to new
candidates with responsibilities to handle this
situation

March 13, 2003 © University of Colorado, 2003 24

Stereotypical Responsibilities

� As mentioned before, stereotypes have
common sets of responsibilities that can
help generate specific responsibilities
for objects that play these roles
� Information holders “know” things

� Service providers “do” things

� Structurers “create” and “maintain” things

� …



March 13, 2003 © University of Colorado, 2003 25

Responsibilities from Relationships

� A meeting has attendees
� Who has the following responsibility:

� “How many people attended this meeting?”

� Probably the meeting object
� This responsibility was derived from the

relationship between the two objects
however

March 13, 2003 © University of Colorado, 2003 26

Patterns for Identifying Responsibilities

� Craig Larman has developed patterns
for helping to identify responsibilities
(we will review four here; he has
actually developed nine such patterns)
� Information Expert (or Expert)

� Creator

� Low Coupling

� High Cohesion

March 13, 2003 © University of Colorado, 2003 27

Information Expert

� Assign a responsibility to the class that
has the information necessary to fulfill it
� Consider a “cash register” domain with the

following objects: Sale, LineItem, Product
� Consider the responsibility: “Know the

grand total of a Sale”
� It seems obvious that the sale object

should have this responsibility, but lets look
at the implications

March 13, 2003 © University of Colorado, 2003 28

Sales Example: Class Diagram

If we want to get the total value of a sale, we would need to call a
method like getTotal() on Sale; This method would need to call a
method like getSubtotal() on LineItem, since LineItem is the
“expert” for this information; But this method would need to call
getPrice() on Product since only Product has this information



March 13, 2003 © University of Colorado, 2003 29

Creator
� Assign class B the responsibility of creating an

instance of A if one or more of the following is true
� B aggregates A
� B contains A
� B records instances of A
� B closely uses A
� B has the data required to initialize A

� In our previous example, Sale should be assigned
the responsibility of creating LineItem objects; this
means that Sale will need a method like
“addLineItem()” or similar

March 13, 2003 © University of Colorado, 2003 30

Low Coupling

� Assign a responsibility so that coupling
remains low
� coupling is a measure of how strongly a class is

connected to, has knowledge of, or relies on other
classes

� Building on our “cash register” example, consider
the classes Payment, Register, and Sale

� How should we handle the “make payment”
responsibility

March 13, 2003 © University of Colorado, 2003 31

Two Options
Which option should
we choose?

The first requires the
Register object to
know about two
objects

The second requires
Register to know
about only one object

All things being equal,
this pattern would
choose option 2

Note that we name the Payment object
above, so we can pass it as a parameter.

March 13, 2003 © University of Colorado, 2003 32

High Cohesion

� Assign a responsibility so that cohesion
remains high
� In terms of object design, cohesion is a measure

of how strongly related and focused the
responsibilities are of a class

� In previous example, this pattern would pick
option 2 again; The Register object is likely to
have many operations that it must handle (or
coordinate); if it has to know the details of
handling each operation it will lack cohesion



March 13, 2003 © University of Colorado, 2003 33

Recording Responsibilities

� Responsibilities should be recorded on
CRC cards

� If you can’t find a “home” for a
responsibility; record it on a post-it node
and place it to one side…eventually a
home will be found for it
� or it may need to be decomposed into

smaller responsibilities that are easier to
assign

March 13, 2003 © University of Colorado, 2003 34

Additional Tips (I)

� State responsibilities generically
� For a customer object, say

� “Knows name and preferred ways of being
addressed”

� Don’t say
� “Knows first name”
� “Knows last name”
� “Knows nick name”
� …

March 13, 2003 © University of Colorado, 2003 35

Additional Tips (II)

� Use strong descriptions
� Vague responsibilities do not help

� So use verbs like
� remove, merge, calculate, activate

� rather than
� organize, record, find, process, maintain

� Avoid nonessential responsibilities
� Do not overlap responsibilities

� For instance do not have a client verify the data it
sends AND have the server verify the data it
receives; have the server verify and the client be
able to handle situations where data is rejected

March 13, 2003 © University of Colorado, 2003 36

Testing Candidate Quality

� Once responsibilities have been assigned,
check to see that each candidate is well
formed
� Does it stick to its purpose?

� Are its responsibilities clearly stated?

� Do its responsibilities match its role?

� Is it of value to other objects in its neighborhood?

� What’s Next?
� Designing collaborations


