
Lecture 17: Maciaszek’s Take on Design

Kenneth M. Anderson

Object-Oriented Analysis and Design

CSCI 6448 - Spring Semester, 2003

March 11, 2003 © University of Colorado, 2003 2

Credit where Credit is Due

� Some material presented in this lecture
is taken from section 6 of Maciaszek’s
“Requirements Analysis and System
Design”. © Addison Wesley, 2000

March 11, 2003 © University of Colorado, 2003 3

Introduction to Design

� Design consists of two major activities
� Architectural Design

� aka “High-Level Design”

� layering of classes and packages

� Detailed Design
� aka “Low-Level Design”

� develop collaboration models that realize the
functionality of a system’s use cases

March 11, 2003 © University of Colorado, 2003 4

Intro. to Design, continued

� Design is a low-level model of a system’s
architecture and its internal workings

� In design, models created during analysis
(state, behavior, state change) are elaborated
with technical details
� such as the target software/hardware platform
� “boundary” classes and controller classes

� Analysis models thus become design models;
we also create new models specific to the
design phase



March 11, 2003 © University of Colorado, 2003 5

Intro. to Design, continued

� The description of a system in terms of its
subsystems and modules is called its
architectural design

� The description of the internal structure of
each module is called a detailed design

� Detailed design develops interfaces for each
module along with recommendations for data
structures and algorithms that can help meet
a system’s non-functional requirements

March 11, 2003 © University of Colorado, 2003 6

Software Architecture
� The architectural design of a system is concerned
with the selection of (what Maciaszek calls) a solution
strategy and with a system’s modularization
� The solution strategy determines how a system’s modules
(or subsystems) are arranged

� A solution strategy involves picking an architectural
style that helps address the environmental
constraints of a software system
� For instance, does the system require remote access to a
database (n-tier architecture)? Do multiple users have to
share data they store locally (peer-to-peer architecture)

Bus
Layered Abstract Machines

Shared Repository
Pipe and Filter

Software Architectural Styles
Components

can be arranged

March 11, 2003 © University of Colorado, 2003 8

Reuse Strategies

� After selecting an architectural style, it is good
to spend time evaluating opportunities for
software reuse
� reusing software can save time and money

� assuming the reused software has been deployed in
some other project providing opportunities for finding and
eliminating bugs

� reuse involves selecting a granularity
� are you going to reuse a class, a package, a system?



March 11, 2003 © University of Colorado, 2003 9

Reuse Strategies, continued

� Maciaszek considers three levels of
granularity
� a class

� a component

� a solution (pattern)

� Associated with these three granularities are
� Toolkits (class libraries)

� Frameworks

� Analysis and Design Patterns

March 11, 2003 © University of Colorado, 2003 10

Toolkit Reuse

� A toolkit emphasizes code reuse at a
class level

� Two types of toolkits
� Foundation toolkits

� primitive and structured data types and
collections (e.g. String, Date, List, …)

� Architecture toolkits
� a toolkit that implements a particular
architecture, such as a database or a GUI

March 11, 2003 © University of Colorado, 2003 11

Framework Reuse

� A framework emphasizes design reuse at a
component level

� A framework typically implements an
application architecture
� A developer can produce a new application by
subclassing or reusing framework classes and
writing application-specific code

� MacOS X provides Cocoa and Carbon frameworks for
this purpose

March 11, 2003 © University of Colorado, 2003 12

Pattern Reuse

� A pattern is a documented solution that
has been shown to work well in a
number of situations
� We shall discuss design patterns in more
detail later this semester (and you will have
a chance to implement a few as well!)



March 11, 2003 © University of Colorado, 2003 13

Components
� Architectures are made up of components connected
together in a particular fashion (e.g. pipe-and-filter)

� A component is a physical part of a system; here
physical refers to be stored on disk as well as being
executable

� UML defines five standard component stereotypes
� Executable (directly executable module)
� Library (a static or dynamic object library)
� Table (database table)
� File (stored on disk)
� Document (human-readable document)

� UML notation for components is shown on page 204

March 11, 2003 © University of Colorado, 2003 14

More on Components

� A component
� is a unit of independent deployment
� is a unit of third-party composition

� meaning, it can be “plugged into” other
components

� has no persistent state (stored within itself)
� is replaceable (by other components)
� fulfills a clear function
� may be nested within other components

March 11, 2003 © University of Colorado, 2003 15

Component Diagrams
� A component diagram shows components and their
relationships
� A dependency relationship indicates that one component
requires the services of another component

� Notated with a dotted line that points to the required component;
Figure 6.6 on page 205

� A composition relationship indicates that one component
contains another component

� Notated with the standard UML composition notation (black
diamond)

� A component diagram can use the “lollipop” notation to
indicate the interfaces supported by a component

� See figure 6.8 on page 207

March 11, 2003 © University of Colorado, 2003 16

Components vs. Packages

� A package is a logical part of a system
� logically, every class of a system belongs to a
particular package

� Physically, every class is implemented by at
least one component
� Think: “A set of classes is compiled into a
component”

� A component can implement only one class,
although typically this is not the case

� Abstract/Entity classes are frequently
implemented by more than one component



March 11, 2003 © University of Colorado, 2003 17

Components vs. Packages, cont.

� Packages tend to group classes horizontally by static
proximity within an application domain
� such as placing all control classes into a control package

� Components tend to group classes vertically based
on behavioral proximity
� such as instantiating a boundary class, its control class, and
relevant entity classes within a component to support a
particular use case

� Packages are often “implemented” via several
components; see figure 6.7 on 206
� This figure means that each class in the Timetable package
has been “covered” by at least one of the three components

March 11, 2003 © University of Colorado, 2003 18

Components vs. Class/Interface

� Components are thus collections of
classes; Each component may
implement one or more interfaces;
� These interfaces may not have a one-to-
one correspondence with the methods of
the component’s implemented classes

� But, the classes are included in the
component to help carry out the activities
supported by the component’s interface(s)

March 11, 2003 © University of Colorado, 2003 19

Deployment
� UML provides a deployment diagram for
documenting system architectures
� Deployment diagrams consist of nodes (notated as cubes, or
with special icons) that are connected via “connection
relationships”

� (see figures 6.9 and 6.10 on pages 207-208)
� connection relationships can be labeled with a network protocol
that indicates how the nodes communicate or with a phrase
that characterizes the connection in some way (such as “nightly
download”)

� Components can be placed within nodes (nodes execute
components) to indicate how a system is to be physically
implemented

� (see figure 6.11 and 6.12 on pages 208-209)

March 11, 2003 © University of Colorado, 2003 20

Detailed Design

� In OO A&D, detailed design is a direct
continuation from analysis
� Our objective is to transform analysis models into
design models that can be implemented by
developers

� Architectural design impacts detailed design
by selecting a target hardware/software
platform (or platforms) and by selecting the
components that will deploy our implemented
design into the “real world”



March 11, 2003 © University of Colorado, 2003 21

Detailed Design, continued
� In analysis, we simplify models by abstracting away

(or deferring) technical details that would either
� get in the way of understanding our application domain, or…

� lead us down an implementation path too early and hence
constrain our choices later in development

� In detailed design, we do the opposite
� we start with analysis models and add technical details, or…

� “drill down” a layer of abstraction on a particular analysis
model and start creating a “design time” model from scratch

March 11, 2003 © University of Colorado, 2003 22

Collaboration

� The UML uses the term “collaboration”
to refer to sets of objects collaborating
to perform a task
� In particular, collaborations are used to
specify the realization of use cases and
operations

� Collaborations are notated as ellipses
with dashed borders (see next slide)

March 11, 2003 © University of Colorado, 2003 23

Collaboration Example

Enter Program of Study

Browse Student List

Add Student to Course Offering

«realize»

«realize»

Note: This use case was first developed
in Section 4.3.1.3 on pages 136-137

March 11, 2003 © University of Colorado, 2003 24

Comments on Example

� Each collaboration needs an associated
model that displays the details of the
collaboration
� Think “Interaction Diagram”
� In particular, a collaboration diagram

� Similar to a sequence diagram (indeed one can be
converted into the other) but emphasizing different
aspects of the collaboration

� sequence diagrams emphasize the order of messages
between objects

� collaboration diagrams emphasize the associations
between objects and the messages that flow over these
associations



March 11, 2003 © University of Colorado, 2003 25

Collaboration Diagrams
� Collaboration diagrams consist of objects

� object names are interpreted as “role : class”
� collections are shown as “stacks of objects”

� Associations between objects are shown; messages travel
across the association in the direction indicated
� Messages can be numbered to show the exact order in which

messages are generated
� As with other UML diagrams, messages sent to collections can be

prefixed with an asterick (“*”) to indicate that the same message is
sent to each member of the collection

� The collaboration diagram in Fig. 6.14 (pg. 210) corresponds to
the sequence diagram in Fig. 2.33 (pg. 66)

March 11, 2003 © University of Colorado, 2003 26

Realization of Use Cases
� Collaborations are to design, what use cases are to analysis

� They help “drive” their respective stages
� However, due to differences in abstraction, typically multiple

collaborations are needed to realize a single use case

� Collaborations consist of a structural part and a behavioral part
� The structural part is the subset of the class diagram that covers

each of the objects participating in the collaboration
� developing a collaboration during design will lead to the original class
diagram being updated with new operations along with operation
signatures

� The behavioral part is an interaction that defines the specific
interaction of the collaboration’s objects

March 11, 2003 © University of Colorado, 2003 27

Example
� Maciaszek provides an example of realizing a use
case with a collaboration on pages 217-221
� Makes use of the “Enter Program of Study” use case for the
University Enrollment example

� First some backtracking
� First, look at the class diagram on page 129
� Second, look at the sequence diagram on page 130

� Now, the collaboration
� First, the structural part on page 218

� boundary and controller classes have been added

� Second, the behavioral part on page 219
� This is not quite equivalent to the sequence diagram because it
includes the boundary/controller classes

March 11, 2003 © University of Colorado, 2003 28

Summary

� Maciaszek’s Take on Design
� High Level Design

� Architectural Style, Components, Deployment

� Low Level Design
� Collaborations

� Consist of “elaborated” class diagrams and
interaction diagrams that build on existing analysis
models but finally take into consideration the
“machine concepts”: e.g. boundary and controller
classes, specific toolkits, computing platforms, etc.


