
Lecture 13: Advanced Analysis (Part 1)

Kenneth M. Anderson

Object-Oriented Analysis and Design

CSCI 6448 - Spring Semester, 2003

February 25, 2003 © University of Colorado, 2003 2

Credit where Credit is Due

! Some material presented in this lecture
is taken from section 5 of Maciaszek’s
“Requirements Analysis and System
Design”. © Addison Wesley, 2000

February 25, 2003 © University of Colorado, 2003 3

Goals for this Lecture

! Cover the material presented in
Section 5 of the textbook

! Introduce
! Advanced Class Modeling

! plus advanced UML notation for classes and
associations

! Class Layers

February 25, 2003 © University of Colorado, 2003 4

Advanced Class Modeling

! First, lets look at some advanced UML
notations for classes and associations

! Then, we will review the material in
section 5.1.1 to 5.1.5 of the Maciaszek
textbook

February 25, 2003 © University of Colorado, 2003 5

Advanced UML Class Notations

! UML supports a number of advanced
modeling features for classes

! Class and Attribute Properties

! Class and Attribute Multiplicity

! Class-Scope Attributes and Operations

! Visibility

February 25, 2003 © University of Colorado, 2003 6

An Example

Connection
{root}

 - id: integer {frozen}
#ports [0..1] : ioStreams
numOfConnections: integer

 - setId()
 + getId()

createConnection()

Abstract Class

Property

3
Multiplicity

Visibility

Multiplicity

Class Scope

February 25, 2003 © University of Colorado, 2003 7

Visibility
! The visibility of an attribute or operation specifies
whether it can be used by other classes

! Three types
! public (+) (This is the default)

! Any outside class can access the feature (as long as it has a
reference to the class)

! protected (#)
! Any descendant of the class can use the feature

! private (-)
! Only the host class can access the feature

February 25, 2003 © University of Colorado, 2003 8

Scope

! A feature (attribute or operation) can be
assigned a scope

! instance: each instance of a class has its
own state for the feature

! classifier (or class): There is only one value
for this feature across all classes

! numberOfConnections in the previous example

! Classifier scope is indicated by
underlining the feature definition

February 25, 2003 © University of Colorado, 2003 9

Properties
! A class can be assigned two properties

! root - the class can have no parents
! leaf - the class can have no children

! A property is indicated by placing it below the class in
brackets, e.g. {leaf}
! attributes and operations can have properties too (covered
later in this lecture)

! A class can also be abstract; which means that no
instances can be created of this class
! This is indicated by placing the class name in italics
! This is used when the root class is meant to serve as a
template for creating various subclasses

February 25, 2003 © University of Colorado, 2003 10

Multiplicity

! Class multiplicity constrains the number
of instances that can be created for a
class

! The multiplicity for classes is indicated in
the top, right corner of the class

! On attributes, it constrains the number
of values an attribute can have

! this lets you specify attributes that can be
modeled as arrays: ports[2..*] : Port

February 25, 2003 © University of Colorado, 2003 11

Complete Attribute Syntax
! The complete syntax for attributes is

[visibility] name [multiplicity] [: type]
[= initial-value] [{property}]

! Example
+ ports [2..*] : Port = null {addOnly}
id : integer = 0

! Attribute Property Values
! changeable: default, freely modifiable
! addOnly:may add new values;no changes allowed
! frozen: the value may not change after the object is
initialized

February 25, 2003 © University of Colorado, 2003 12

Complete Operation Syntax

! The complete syntax for operations is
[visibility] name [(parameter-list)] [: return-type] [{property}]

! The complete syntax for a parameter is
[direction] name : type [= default-value]

! Examples
+ set(n : Name, s : String) {sequential}

- setId(inout id : integer)

February 25, 2003 © University of Colorado, 2003 13

Additional Operation Info

! Possible Direction Values
! in : An input parameter; may not be modified
! out : An output parameter; may be modified to
communicate with caller

! inout: An input parameter; may be modified

! Possible Operation Properties
! isQuery: Does not change state of system
! sequential: does not support multiple threads
! guarded: does protect against multiple threads
! concurrent: multiple threads can execute it at the
same time

February 25, 2003 © University of Colorado, 2003 14

Associations

! Advanced adornments for associations
include

! navigation

! visibility

! qualification

! In addition, we will introduce/review the
notions of (and the notations for)

! association classes

! association constraints

February 25, 2003 © University of Colorado, 2003 15

Association Navigation

! A direction can be added to an
association

! in this example, you can navigate from
objects of type User to objects of type
Password but not the other way around

User Password

February 25, 2003 © University of Colorado, 2003 16

Association Visibility
! Visibility can be assigned to an association role

! public: objects outside the association can navigate the
association

! protected: only an object and its children can access a
protected association

! private: only the objects that participate in the association
can navigate it; Below only instances of the User class can
retrieve a Password via the key role name

UserGroup User Password- key

February 25, 2003 © University of Colorado, 2003 17

Association Qualification

! Associations sometimes model relationships
that involve “look up” or queries

! That is, when navigating the relationship, you are
looking for a particular object (or set of objects)

! Example
! A phonebook consists of multiple entries
! Given a name, we want to look up the associated
phone number

! Note
! Maciaszek talks about qualification in section 5.1.6

February 25, 2003 © University of Colorado, 2003 18

Association Qualification, cont.

! UML can model such a situation using
an association qualification

! the qualification is drawn as a rectangle
extending out of its associated class

! the rectangle contains the attributes used
to perform the “look up”

Phonebook Entriesname: string

February 25, 2003 © University of Colorado, 2003 19

Association Classes

! There are times when it becomes necessary
to associate data with an association

! Employment: should the details of a job be
associated with a company or a person?

! Note: Maciaszek talks about some of the
difficulties of association classes in 5.1.7

! This information is not required for this class

Company Person

Job
February 25, 2003 © University of Colorado, 2003 20

Association Constraints

! UML provides five pre-defined association
constraints

! implicit: the relationship is conceptual
! ordered: the set of objects at one end of the
association are in an explicit order

! changeable: links between objects can be
modified freely

! addOnly: new links may only be added; existing
links may not change

! frozen: a link, once added, cannot be modified

! Constraints are drawn in braces: {frozen}

February 25, 2003 © University of Colorado, 2003 21

Maciaszek, section 5.1.1

! Stereotypes
! Generic extension mechanism in UML

! Indicated with chevrons,«extend»

! Used to change the semantics of an
existing UML element

! Such as labeling a class «Actor» to indicate
that it came from the Use Case model

February 25, 2003 © University of Colorado, 2003 22

Maciaszek, section 5.1.2-5.1.3

! Constraints, Notes, and Tags
! Used to indicate semantics that cannot be
expressed by the UML notation

! Indicated by curly brackets { } or the UML note
symbol (page 159); Notes which indicate
constraints should use the «constraint» stereotype

! See examples of constraints on pages 157 to 159

! A tag is any non-constraint textual information
attached to the analysis model using curly
brackets (see page 158)

February 25, 2003 © University of Colorado, 2003 23

Maciaszek, section 5.1.4
! Visibility

! See slide 7
! Maciaszek addresses some interesting issues with respect to
visibility and inheritence and the notion of “friend”

! most of these issues arise when your implementation language is C++
! as such, I place less importance on these issues
! if you develop in C++, be sure to study section 5.1.4 in depth

! For the most part, in analysis, you should apply the following
heuristics

! all attributes are private
! all operations are public

! subclasses must access attributes of parents via operations
! You can change this later in implementation, when a profiler indicates
that these heuristics are slowing you down (do so only in the presence
of such information, e.g. do not assume that it is slowing you down
without first checking!)

February 25, 2003 © University of Colorado, 2003 24

Maciaszek, section 5.1.5

! Derived Information
! Derived attributes and associations indicate
information that can be computed from other
attributes and associations

! As such, when notated, these elements represent
redundant information

! however, its best to specify this information explicitly to
remind you later that it can be computed!

! The notation for derived attributes and
associations is a “/” in front of their name

! See pages 166 and 167

February 25, 2003 © University of Colorado, 2003 25

Class Layers
! Software Systems consist of components and
subsystems that can be highly interconnected

! The complexity of such systems is defined by connection

! Maximum connection between a set of classes is n (n - 1) / 2
! See figure 5.16 on page 173

! Why is this a problem?
! The 7 ± 2 rule: humans have a hard time dealing with ten or
more concepts simultaneously

! Approach
! The use of hierarchy can be beneficial in such situations;
modularity is important too!

February 25, 2003 © University of Colorado, 2003 26

Class Layers, continued

! Using hierarchy the fully connected
class graph of figure 5.16 is reduced in
figure 5.17

! Classes are layered in a hierarchy and
classes in layer n can only be connected to
classes in layers n-1, n, and n+1

! UML provides the notion of a package to
address these issues

! packages are used to group classes

February 25, 2003 © University of Colorado, 2003 27

Packages

! Packages are indicated using a “folder
icon” in the UML

! Classes are clustered “inside”

! Oftentimes, packages represent
subsystems and can be stereotyped
with «subsystem»

! Packages can be also be nested

February 25, 2003 © University of Colorado, 2003 28

Summary

! Reviewed advanced UML notations
! Discussed UML extension mechanisms
! Introduced notion of UML Packages

! What’s Next?
! Review of more information in Section 5

! Advanced issues of generalization, aggregation,
and a new concept: delegation

