gﬂ Lecture 11: Requirements Specification
|

Kenneth M. Anderson
Object-Oriented Analysis and Design
CSCI 6448 - Spring Semester, 2003

Credit where Credit is Due

» Some material presented in this lecture
is taken from section 4 of Maciaszek’s
“Requirements Analysis and System
Design”. © Addison Wesley, 2000

February 18, 2003 © University of Colorado, 2003 2

Goals for this Lecture

 Cover the material presented in
Section 4 of the textbook
 Introduce Requirements Specification

 Provides more insight into OO Analysis
+ This chapter provides many examples

February 18, 2003 © University of Colorado, 2003

Requirements Specification

» Produces three types of models

» State Models (This Lecture)
» Use Cases (some actors become classes)
» Class Diagrams
» Behavior Models (Lecture 12)
» Activity Diagrams
» Interaction Diagrams
» State Change Models (Lecture 12)
» State Chart Diagrams

February 18, 2003 © University of Colorado, 2003 4

Requirements Specification

1 Models are developed iteratively
1 Taking into account use cases and constraints
(developed during requirements elicitation)
 Each model, or diagram, represents a view
into the system; the models, taken together,
allow developers and customers to view the
system from multiple perspectives

 We now examine each type of model in more
detail

February 18, 2003 © University of Colorado, 2003 5

State specifications

 The state of an object is determined by
the values of its attributes and
associations
A BankAccount may be “overdrawn” when

its balance is negative

1 Since object states are determined from
data structures, the models of the data
structures (e.g. classes) are called state
specifications

February 18, 2003 © University of Colorado, 2003 6

State Specifications

1 State specifications provide a static
view of the system

. The attributes and associations of classes
do not change dynamically

 The main task is to specify the classes
of an application domain

+only attributes and associations; operations
are derived from the behavior specification

February 18, 2003 © University of Colorado, 2003 7

State Specification

1 Define entity classes
1 Persistent classes in the app. domain
1 aka business objects
1 How to do this? The process is highly
dependent on the analyst’s
1 knowledge of class modeling
1 understanding of the application domain
1 experience with similar and successful designs
1 ability to think forward and predict consequences
1 willingness to revise the model iteratively

February 18, 2003 © University of Colorado, 2003 8

Discovering Classes

 Four Approaches
 Noun Phrase Approach
 Common Class Patterns
 Use Case Driven (already covered)
. Maciaszek’s Guidelines
 CRC (Class-Responsibility-Collaboration)

+ | will be providing expanded coverage of this
technique (as compared to the information
presented by your textbook)

February 18, 2003 © University of Colorado, 2003 9

Noun Phrase Approach

+ Examine the requirements and underline each noun
+ Each noun is a candidate class

+Divide list of candidate classes into
1 Relevant Classes
+ Part of the application domain; occur frequently in regs.
i Irrelevant Classes
. Outside of application domain
t Fuzzy Classes
 Unable to be declared relevant with confidence; require
additional analysis
Experience will eventually enable designers to avoid
generating irrelevant classes

February 18, 2003 © University of Colorado, 2003 10

Noun Phrase Approach, continued

1 This technique now considered naive
 While it may help in identifying domain objects, it
is not good at identifying objects that live in the
application domain

1 Thus, it can help at the beginning of analysis, but
you will not return to it as you move into design
+ Finding good objects during design means identifying

abstractions that are part of your application domain and
its execution machinery

1 Objects that are part of your application domain will have
a tenuous connection, at best, to real-world things

1 e.g. what’s the correspondence of a scrollbar to the real-
world

February 18, 2003 © University of Colorado, 2003 1

Common Class Patterns

1 Derive classes from the generic classification
theory of objects

1 Concept class - a notion shared by a large
community

 Events class - captures an event that demarks
intervals within a system

1 Organization class - a collection or group within
the domain

1 People class - roles people can play

1 Places class - a physical location relevant to the
system

February 18, 2003 © University of Colorado, 2003 12

Common Class Patterns

Rumbaugh proposes a different scheme
1 Physical Class (Airplane)
1 Business Class (Reservation)
1 Logical Class (FlightTimeTable)
1 Application Class (ReservationTransaction)
1 Computer Class (Index)
+ Behavioral Class (ReservationCancellation)

1 These taxonomies are meant to help a designer think
of classes, however it is difficult to be systematic.
(This technique is probably only useful during early
analysis as well)

February 18, 2003 © University of Colorado, 2003 13

Maciaszek’s Guidelines

 Each class must have a statement of purpose in the
system

 Each class is a template for a set of objects
+ avoid singleton classes

 Each class must house a set of attributes

1 Each class should be distinguished from an attribute

1 e.g. Color may be an attribute of a Car class, but may be
needed as a full class in a paint program

 Each class houses a set of operations that
represents the interface of the class
+ operations can be derived from the statement of purpose

February 18, 2003 © University of Colorado, 2003 14

CRC Cards

1 CRC stands for
1 Candidates, Responsibilities, Collaborators

1 Meant primarily as a brainstorming tool for
analysis and design
 Rather than use diagrams, use index cards

1 Rather than record attributes and methods, record
responsibilities
1 Some material on CRC cards drawn from Object
Design by Wirfs-Brock and McKean, © 2003

February 18, 2003 © University of Colorado, 2003 15

Unlined Side of Card

1 On the unlined side of the index card,
we write an informal description of each
candidate’s purpose and role

Document

Purpose: A Document acts as a container
for graphics and text

Role: Container
Pattern: Composite

February 18, 2003 © University of Colorado, 2003 16

Lined Side of Card

+ On the unlined side of the index card,
we write an informal description of each
candidate’s purpose and role

Document <« candidate

Knows contents TextFlow

Knows storage location

Inserts and removes text,

graphics, and other elements

responsibilities collaborators

February 18, 2003 © University of Colorado, 2003 17

Not Just Index Cards

1 Post-It Notes can be used for even less
“structure”; might be easier when
brainstorming

Document

Purpose: A document represents
a container that holds text and/or
graphics that the user can enter
and visually arrange on pages

February 18, 2003 © University of Colorado, 2003 18

Why index cards?

+ Forces you to be concise and clear
+ and focus on major responsibilities
1 since you must fit everything onto one index card
i Inherent Advantages
1 cheap, portable, readily available, and familiar
1 Affords Spatial Semantics...
+ Close collaborators can be overlapped
+ Vertical dimension can be assigned meanings
1 Abstract classes and specializations can form piles
 ...which provides benefits

+ Beck and Cunningham report that they have seen designers talk
about a new card by pointing at where it will be placed

February 18, 2003 © University of Colorado, 2003 19

Class Activity Section

 Let’s try it!
1 Pick one of four domains
 Banking (checking & saving accounts, etc.)
+ Airline Reservations
 Document Processor
. Weblog Reader/Editor

February 18, 2003 © University of Colorado, 2003 20

Examples in Textbook

 Pages 112-133 work through four examples
of class specification in detail
1 class discovery
1 then specifying
¢ attributes
1 associations

1 aggregations/compositions
1 inheritance

1 We shall follow the University Enrollment example

February 18, 2003 © University of Colorado, 2003 21

University Enrollment

1 Requirements specified on pages 112-
113 and 117

1 After reading the first set of
requirements, candidate classes are
identified on page 114

 We will delay creating a class diagram until
we consider attributes

February 18, 2003 © University of Colorado, 2003 22

Specifying Attributes

1 Attributes are specified in parallel with
classes
¢ initial set of attributes will be “obvious”

important to initially select attributes that help to
determine the states of the class

+ additional attributes can be added in subsequent
iterations

 Example cont.: After reading a second set of
requirements on page 117, an initial class
diagram (with attributes) is presented on
page 4.1

February 18, 2003 © University of Colorado, 2003 23

Specifying Associations

1 Associations connect objects in the system
1 they facilitate collaboration between objects

1 Specifying associations involves
1 naming them

1 naming the roles
+especially useful in self associations

. note, a role name becomes an attribute in the class on
the opposite end of the association

1 determining multiplicity

1 What associations might we put into the
University example?

February 18, 2003 © University of Colorado, 2003 24

Specifying Aggregation/Composition

» “Whole-part” relationships between
composite and component classes

» UML models aggregation as a constrained form of
association

» Maciaszek suggests additional power
= ExclusiveOwns and Owns
= Has and Member

» Litmus test: “has” or “is-part-of” is needed to
explain relationship

February 18, 2003 © University of Colorado, 2003 25

Example, continued

+ Aggregations for the University example
is shown in figure 4.6 on page 129

+ Student and AcademicRecord
participate in a composition relationship

1 A Course aggregates its various
CourseOfferings

February 18, 2003 © University of Colorado, 2003 26

Specifying Generalizations

1 Looking for common features among classes

1 Move common features up a class hierarchy and
specialized features down

+ Apart from inheritance, generalization has
two objectives
1 substitutability and polymorphism

1 Litmus test: “can be” and “is-a-kind-of”
required to explain relationship

+ Are there any generalizations that we can
make in the University example?

February 18, 2003 © University of Colorado, 2003 27

Summary

1 Requirements Specification
+ Involves creating state, behavior, and state
change models
1 We looked at state models today in depth
+ How do we find classes in the first place?
 Looked at CRC Cards in depth

+ We will be returning to their use in design later this
semester

+ How do we then find attributes and associations

+ Associations have many types, including composition,
aggregation and generalization

February 18, 2003 © University of Colorado, 2003 28

