
Lecture 11: Requirements Specification

Kenneth M. Anderson

Object-Oriented Analysis and Design

CSCI 6448 - Spring Semester, 2003

February 18, 2003 © University of Colorado, 2003 2

Credit where Credit is Due

! Some material presented in this lecture
is taken from section 4 of Maciaszek’s
“Requirements Analysis and System
Design”. © Addison Wesley, 2000

February 18, 2003 © University of Colorado, 2003 3

Goals for this Lecture

! Cover the material presented in
Section 4 of the textbook

! Introduce Requirements Specification

! Provides more insight into OO Analysis
! This chapter provides many examples

February 18, 2003 © University of Colorado, 2003 4

Requirements Specification

! Produces three types of models
! State Models (This Lecture)

! Use Cases (some actors become classes)
! Class Diagrams

! Behavior Models (Lecture 12)
! Activity Diagrams
! Interaction Diagrams

! State Change Models (Lecture 12)
! State Chart Diagrams



February 18, 2003 © University of Colorado, 2003 5

Requirements Specification

! Models are developed iteratively
! Taking into account use cases and constraints

(developed during requirements elicitation)

! Each model, or diagram, represents a view
into the system; the models, taken together,
allow developers and customers to view the
system from multiple perspectives

! We now examine each type of model in more
detail

February 18, 2003 © University of Colorado, 2003 6

State specifications

! The state of an object is determined by
the values of its attributes and
associations

! A BankAccount may be “overdrawn” when
its balance is negative

! Since object states are determined from
data structures, the models of the data
structures (e.g. classes) are called state
specifications

February 18, 2003 © University of Colorado, 2003 7

State Specifications

! State specifications provide a static
view of the system

! The attributes and associations of classes
do not change dynamically

! The main task is to specify the classes
of an application domain

! only attributes and associations; operations
are derived from the behavior specification

February 18, 2003 © University of Colorado, 2003 8

State Specification

! Define entity classes
! Persistent classes in the app. domain

! aka business objects

! How to do this? The process is highly
dependent on the analyst’s

! knowledge of class modeling
! understanding of the application domain
! experience with similar and successful designs
! ability to think forward and predict consequences
! willingness to revise the model iteratively



February 18, 2003 © University of Colorado, 2003 9

Discovering Classes

! Four Approaches
! Noun Phrase Approach
! Common Class Patterns
! Use Case Driven (already covered)
! Maciaszek’s Guidelines
! CRC (Class-Responsibility-Collaboration)

! I will be providing expanded coverage of this
technique (as compared to the information
presented by your textbook)

February 18, 2003 © University of Colorado, 2003 10

Noun Phrase Approach
! Examine the requirements and underline each noun

! Each noun is a candidate class

! Divide list of candidate classes into
! Relevant Classes

! Part of the application domain; occur frequently in reqs.

! Irrelevant Classes
! Outside of application domain

! Fuzzy Classes
! Unable to be declared relevant with confidence; require

additional analysis

! Experience will eventually enable designers to avoid
generating irrelevant classes

February 18, 2003 © University of Colorado, 2003 11

Noun Phrase Approach, continued

! This technique now considered naïve
! While it may help in identifying domain objects, it

is not good at identifying objects that live in the
application domain

! Thus, it can help at the beginning of analysis, but
you will not return to it as you move into design

! Finding good objects during design means identifying
abstractions that are part of your application domain and
its execution machinery

! Objects that are part of your application domain will have
a tenuous connection, at best, to real-world things

! e.g. what’s the correspondence of a scrollbar to the real-
world

February 18, 2003 © University of Colorado, 2003 12

Common Class Patterns

! Derive classes from the generic classification
theory of objects

! Concept class - a notion shared by a large
community

! Events class - captures an event that demarks
intervals within a system

! Organization class - a collection or group within
the domain

! People class - roles people can play
! Places class - a physical location relevant to the

system



February 18, 2003 © University of Colorado, 2003 13

Common Class Patterns
! Rumbaugh proposes a different scheme

! Physical Class (Airplane)
! Business Class (Reservation)
! Logical Class (FlightTimeTable)
! Application Class (ReservationTransaction)
! Computer Class (Index)
! Behavioral Class (ReservationCancellation)

! These taxonomies are meant to help a designer think
of classes, however it is difficult to be systematic.
(This technique is probably only useful during early
analysis as well)

February 18, 2003 © University of Colorado, 2003 14

Maciaszek’s Guidelines
! Each class must have a statement of purpose in the

system
! Each class is a template for a set of objects

! avoid singleton classes

! Each class must house a set of attributes
! Each class should be distinguished from an attribute

! e.g. Color may be an attribute of a Car class, but may be
needed as a full class in a paint program

! Each class houses a set of operations that
represents the interface of the class

! operations can be derived from the statement of purpose

February 18, 2003 © University of Colorado, 2003 15

CRC Cards

! CRC stands for
! Candidates, Responsibilities, Collaborators

! Meant primarily as a brainstorming tool for
analysis and design

! Rather than use diagrams, use index cards

! Rather than record attributes and methods, record
responsibilities

! Some material on CRC cards drawn from Object
Design by Wirfs-Brock and McKean, © 2003

February 18, 2003 © University of Colorado, 2003 16

Unlined Side of Card

! On the unlined side of the index card,
we write an informal description of each
candidate’s purpose and role

Document
Purpose: A Document acts as a container
for graphics and text

Role: Container
Pattern: Composite



February 18, 2003 © University of Colorado, 2003 17

Lined Side of Card

! On the unlined side of the index card,
we write an informal description of each
candidate’s purpose and role

Document
Knows contents
Knows storage location
Inserts and removes text,
graphics, and other elements

TextFlow

candidate

responsibilities collaborators

February 18, 2003 © University of Colorado, 2003 18

Not Just Index Cards

! Post-It Notes can be used for even less
“structure”; might be easier when
brainstorming

Document
Purpose: A document represents
a container that holds text and/or
graphics that the user can enter 
and visually arrange on pages

February 18, 2003 © University of Colorado, 2003 19

Why index cards?
! Forces you to be concise and clear

! and focus on major responsibilities
! since you must fit everything onto one index card

! Inherent Advantages
! cheap, portable, readily available, and familiar

! Affords Spatial Semantics…
! Close collaborators can be overlapped
! Vertical dimension can be assigned meanings
! Abstract classes and specializations can form piles

! …which provides benefits
! Beck and Cunningham report that they have seen designers talk

about a new card by pointing at where it will be placed

February 18, 2003 © University of Colorado, 2003 20

Class Activity Section

! Let’s try it!

! Pick one of four domains
! Banking (checking & saving accounts, etc.)

! Airline Reservations

! Document Processor

! Weblog Reader/Editor



February 18, 2003 © University of Colorado, 2003 21

Examples in Textbook

! Pages 112-133 work through four examples
of class specification in detail

! class discovery

! then specifying
! attributes

! associations

! aggregations/compositions

! inheritance

! We shall follow the University Enrollment example

February 18, 2003 © University of Colorado, 2003 22

University Enrollment

! Requirements specified on pages 112-
113 and 117

! After reading the first set of
requirements, candidate classes are
identified on page 114

! We will delay creating a class diagram until
we consider attributes

February 18, 2003 © University of Colorado, 2003 23

Specifying Attributes

! Attributes are specified in parallel with
classes

! initial set of attributes will be “obvious”
! important to initially select attributes that help to

determine the states of the class
! additional attributes can be added in subsequent

iterations

! Example cont.: After reading a second set of
requirements on page 117, an initial class
diagram (with attributes) is presented on
page 4.1

February 18, 2003 © University of Colorado, 2003 24

Specifying Associations

! Associations connect objects in the system
! they facilitate collaboration between objects

! Specifying associations involves
! naming them
! naming the roles

! especially useful in self associations
! note, a role name becomes an attribute in the class on

the opposite end of the association

! determining multiplicity

! What associations might we put into the
University example?



February 18, 2003 © University of Colorado, 2003 25

Specifying Aggregation/Composition

! “Whole-part” relationships between
composite and component classes
! UML models aggregation as a constrained form of

association

! Maciaszek suggests additional power
! ExclusiveOwns and Owns

! Has and Member

! Litmus test: “has” or “is-part-of” is needed to
explain relationship

February 18, 2003 © University of Colorado, 2003 26

Example, continued

! Aggregations for the University example
is shown in figure 4.6 on page 129

! Student and AcademicRecord
participate in a composition relationship

! A Course aggregates its various
CourseOfferings

February 18, 2003 © University of Colorado, 2003 27

Specifying Generalizations

! Looking for common features among classes
! Move common features up a class hierarchy and

specialized features down

! Apart from inheritance, generalization has
two objectives

! substitutability and polymorphism

! Litmus test: “can be” and “is-a-kind-of”
required to explain relationship

! Are there any generalizations that we can
make in the University example?

February 18, 2003 © University of Colorado, 2003 28

Summary

! Requirements Specification
! Involves creating state, behavior, and state

change models
! We looked at state models today in depth
! How do we find classes in the first place?

! Looked at CRC Cards in depth
! We will be returning to their use in design later this

semester

! How do we then find attributes and associations
! Associations have many types, including composition,

aggregation and generalization


