
Lecture 10: Use Case Patterns

Kenneth M. Anderson
Object-Oriented Analysis and Design
CSCI 6448 - Spring Semester, 2003

February 13, 2003 © University of Colorado, 2003 2

Goals for this Lecture
! Look at a number of Use Case Patterns

! from the book
! Patterns for Effective Use Cases

! by Steve Adolph and Paul Bramble
! Addison-Wesley and Pearson Education, Inc.
! © 2003
! ISBN 0-201-72184-8

February 13, 2003 © University of Colorado, 2003 3

What are Patterns
! The “pattern movement” has its origins in Christopher

Alexander’s work in the late 1970s to define pattern
languages for designing cities and communities
! “Each pattern describes a problem which occurs over and

over again in our environment, and then describes the core
of a solution to that problem…”

! Design patterns (which we cover later in the
semester), thus, are useful solutions to common
design problems

! Use Case patterns, then, contain solutions to
problems that are related to creating and maintaining
a set of use cases

February 13, 2003 © University of Colorado, 2003 4

Common Misconceptions
! Patterns offer a complete methodology in and of

themselves
! They only offer solutions to specific problems; they do not

provide a complete picture of a given domain

! Using patterns guarantees success
! Patterns specify a context in which they should be used; if

your context does not match, then the pattern may fail

! Patterns offer new solutions to old problems
! Patterns document “solutions that have worked in the past”

for specific problems; thus, they document “tried-and-true”
solutions rather than innovative or untested approaches

February 13, 2003 © University of Colorado, 2003 5

Parts of a Use Case Pattern
! Pattern Name

! provides vocabulary
! Context

! preconditions

! Problem Statement
! what happens if the use

case is not followed
! Metaphoric Story

! case study to make the
pattern easier to understand

! Forces Affecting the Problem
! various factors that affect

the problem and what trade-
offs can be made between
them

! The Solution
! the technique used to solve

the problem
! Examples

! Demonstrates benefits of
following pattern or
consequences if you don’t

February 13, 2003 © University of Colorado, 2003 6

Types of Use Case Patterns
! Adolph and Bramble have defined 31 use

case patterns of two particular types
! Development Patterns

! Team Organization - use case team
! Process - process used to write use cases
! Editing - how to evolve existing use cases

! Structural Patterns
! Use case sets - involving collections of use cases
! Use cases - involving individual use cases
! Scenarios and steps - involving action steps
! Use case relationships - «include», «extend», etc.

February 13, 2003 © University of Colorado, 2003 7

Just to give you a feel…
! SmallWritingTeam
! ParticipatingAudience
! BalancedTeam
! BreadthBeforeDepth
! SpiralDevelopment
! TwoTierReview
! QuittingTime
! RedistributeTheWealth
! CleanHouse
! CommonSubBehavior
! ActorIntentAccomplished

! InterruptsAsExtensions
! PromotedAlternative
! SharedClearVision
! VisibleBoundary
! ClearCastOfCharacters
! UserValuedTransactions
! EverUnfoldingStory
! CompleteSingleGoal
! VerbPhraseName
! ScenarioPlusFragments
! Adornments

February 13, 2003 © University of Colorado, 2003 8

Pattern Overview
! The Team (D)

! SmallWritingTeam

! The Process (D)
! BreadthBeforeDepth
! SpiralDevelopment
! QuittingTime

! The Use Case Set (S)
! SharedClearVision
! UserValuedTransactions

! The Use Case (S)
! CompleteSingleGoal
! VerbPhaseName
! Adornments

! The Scenario (S)
! LeveledSteps

! The Step (S)
! ForwardProgress

! (S) - Structure
! (D) - Development

February 13, 2003 © University of Colorado, 2003 9

SmallWritingTeam
! Problem

! Using too many people to write a use case is
inefficient, and the compromises made to align the
many different points of view may result in a less
than satisfactory system

! Solution
! Restrict the number of people refining any one

work product to just two or three people. Use a
TwoTierReview process to include more people

! TwoTierReview says to hold two types of reviews
! The first by a smaller team, possible held many times
! the second by the complete group, perhaps just once

February 13, 2003 © University of Colorado, 2003 10

BreadthBeforeDepth
! Problem

! You will not make timely progress or create
coherent use cases if you waste energy writing
detailed use cases sequentially

! Solution
! Conserve your energy by developing an overview

of your use cases first, then progressively add
detail, working across a group of related use
cases

! Use the UML graphical notation for this process, since
this notation only allows the specification of a use case
name (and optionally extension points) within a use case
oval

February 13, 2003 © University of Colorado, 2003 11

SpiralDevelopment
! Problem

! Developing use cases in a single pass is difficult and can
make it expensive to incorporate new information into them.
Even worse, it can delay the discovery of risk factors

! Solution
! Develop use cases in an iterative, breadth-first manner, with

each iteration progressively increasing the precision and
accuracy of the use case set

! One Approach
! List actors and goals first; pause
! Select subset and develop success scenarios; iterate

perhaps adding actors, goals, and new use cases
! Then, select subset and develop extensions, etc.

February 13, 2003 © University of Colorado, 2003 12

QuittingTime
! Problem

! Developing a use case model beyond the needs
of the stakeholders and developers wastes
resources and delays the project

! Solution
! Stop developing use cases once they are

complete and satisfactorily meet audience needs
! To determine if your use cases are “complete”:

! 1. Have you identified and documented all actors/goals?
! 2. Does the customer think the set is complete?
! 3. Can your designers implement these use cases?

February 13, 2003 © University of Colorado, 2003 13

SharedClearVision
! Problem

! The lack of a clear vision about a system can lead to
indecision and contrary opinions among the stakeholders
and can quickly paralyze the project

! Solution
! Prepare a statement of purpose for the system that clearly

describes the objectives of the system and supports the
mission of the organization. Distribute widely.

! In the “vision statement,” describe objectives, problems the
system will solve, problems the system will NOT solve, the
stakeholders, and the benefits provided to the stakeholders

February 13, 2003 © University of Colorado, 2003 14

UserValuedTransactions
! Problem

! A system is deficient if it cannot deliver services
that are valuable to its users and it does not
support the goals and objectives specified by the
SharedClearVision

! Solution
! Identify the valuable services that the system

delivers to the actors to satisfy their business
purposes

! Leads to use cases like “Hire Employee”
rather than “Create Employee Record”

February 13, 2003 © University of Colorado, 2003 15

CompleteSingleGoal
! Problem

! Improper goals will leave writers uncertain about
where one use case ends and another begins

! Solution
! Write each use case to address one complete and

well-defined goal.
! Example

! Change Seat
! In an airline setting, this could refer to exchanging a seat

or upgrading a seat; better to make the goal more clear

February 13, 2003 © University of Colorado, 2003 16

VerbPhraseName
! Problem

! Meaningless, generic names will not set reader expectations
or provide a convenient reference point

! Names should convey meaning

! Solution
! Name the use case with an active verb phrase that

represents the goal of the primary actor
! Bad Examples

! Main Use Case, Claim Process, Use Case 2
! Better Examples

! File Accident Claim, Approve Property Damage Claim

February 13, 2003 © University of Colorado, 2003 17

Adornments
! Problem

! The inclusion of non-functional requirements in a use case
can quickly clutter and obscure the details of a use case

! Solution
! Create additional fields in the use case template that are

outside the scenario text to hold supplementary information
! Example: Do not place conditional logic in a scenario

that captures business rules. For example, “Is a user
eligible for a seat upgrade?”
! Simply assume that they are, then place rules for “eligibility”

in a separate field of the use case

February 13, 2003 © University of Colorado, 2003 18

LeveledSteps
! Problem

! Excessively large or excessively small use case
steps obscure the goal and make the use case
difficult to read and comprehend

! Imagine describing the action of stepping onto a sidewalk
in smaller and smaller steps

! Solution
! Keep scenarios to three to nine steps; Ideally, the

steps are all at similar levels and at a level of
abstraction just below the use case goal

! Examples will be presented in class

February 13, 2003 © University of Colorado, 2003 19

ForwardProgress

! Problem
! Writers have to decide how much behavior to put

into any one step. They can easily write too much
detail, making the use case long and tiring to read

! Solution
! Eliminate or merge steps that do not advance the

actor. Simplify passages that distract the reader
from this progress

! Examples will be presented in class

February 13, 2003 © University of Colorado, 2003 20

What’s Next?
! More details about the analysis phase

! How to find candidate classes
! CRC cards will be used as an example

! How to find relationships between classes
! Advanced UML notations for classes,

relationships, etc.
! Problems encountered during analysis

! Then, the midterm…stay tuned!

