
Lecture 8: Introduction to OO
Analysis (by example)

Kenneth M. Anderson
Object-Oriented Analysis and Design
CSCI 6448 - Spring Semester, 2003

February 6, 2003 © University of Colorado, 2003 2

Credit where Credit is Due
! Some material presented in this lecture
is taken from section 2.2 of Maciaszek’s
“Requirements Analysis and System
Design”. © Addison Wesley, 2000

February 6, 2003 © University of Colorado, 2003 3

Goals for this Lecture
! Work through the tutorial in Section 2.2
of the textbook
! Provides overview of OO Analysis
! Provides insight into how UML is used

February 6, 2003 © University of Colorado, 2003 4

Tutorial in Analysis Modeling
! Tutorial provides an example of analysis
modeling with respect to the task of “on-line
shopping”
! We will develop four types of models

! The use case model
! The state model
! The behavior model
! The state change model

! Slides will provide background information;
book will provide diagrams

February 6, 2003 © University of Colorado, 2003 5

OnLine Shopping – Order Processing
! Buying computers via Internet - page 47
! The customer can select a standard
configuration or can build a desired
configuration online

! To place an order, the customer must fill out
the shipment and payment information

! The customer can check the order status
online at any time

! The ordered configuration is shipped to the
customer together with the invoice

February 6, 2003 © University of Colorado, 2003 6

Step 1: Find Use Cases
! The tutorial begins by talking about use
cases
! Each use case represents a complete unit
of functionality that is required by an actor

! An actor is any entity that interacts with our
system; typically a human, but could also be an
external software system

! Since actors are external to the system, use
cases document outwardly visible and testable
system behavior

February 6, 2003 © University of Colorado, 2003 7

Actors
! Consider the requirement: After the customer’s order has
been entered into the system, the salesperson sends an
electronic request to the warehouse with details of the
ordered configuration

Customer Salesperson Warehouse
February 6, 2003 © University of Colorado, 2003 8

Use cases
! Consider the requirement

! The customer uses the shopping web page
to view the standard configuration of the
chosen server, desktop or portable
computer. The price is also shown

Display Standard
Computer Configuration

February 6, 2003 © University of Colorado, 2003 9

Use Cases, continued
! Some use cases may not interact directly with
actors
! Instead, they support other use cases
! In particular, if several use cases each share a
common task, it makes sense to encapsulate the
common task in its own separate use case

! A use case diagram is a visual representation
of actors and use cases
! Note: UML diagram is synonymous with UML
model

February 6, 2003 © University of Colorado, 2003 10

Step 1, continued
! The tutorial starts the process of
modeling by transforming the problem
statement (page 47) into a set of
extended requirements (page 48-49)
! These are not meant to be a complete list
of requirements; simply a first set that can
be derived directly from the problem
statement

February 6, 2003 © University of Colorado, 2003 11

Step 1, continued
! Next, the requirements are placed in a
table to help identify use cases and
actors (pg. 50 and 51)
! Useful for deriving an initial set of use
cases;

! more will be found later as information about
the domain is discovered or as a result of
working on other models

! Some requirements lead to multiple use
case

February 6, 2003 © University of Colorado, 2003 12

Step 1, continued
! Having identified use cases and actors, a use
case diagram can be constructed
! (page 52)

! A use case diagram is meant to show
relationships between use cases and actors
! Two types of relationships shown

! association - a communication path
! extend - a use case can define extension points where
behavior may be customized; an extends relationships
indicates that a use case is providing a customization of
another use case

February 6, 2003 © University of Colorado, 2003 13

Narrative use case specification

! A use case diagram only shows
relationships between use cases
! it does not provide any information about
the details of a use case

! thus, each use case needs to be
documented textually (page 53); see next
slide

February 6, 2003 © University of Colorado, 2003 14

Documenting use cases
! Brief Description
! Actors involved
! Preconditions necessary for the use case to start
! Detailed Description of flow of events that includes:

! Main Flow of events, that can be broken down to show:
! Subflows of events (subflows can be further divided into
smaller subflows to improve document readability)

! Alternative Flows to define exceptional situations

! Postconditions that define the state of the system
after the use case ends

February 6, 2003 © University of Colorado, 2003 15

Step 2: Find Activities
! The textual information of a use case
provides details about the flow of events
that occur when carrying out its task
! This information can be depicted
graphically with an activity model

February 6, 2003 © University of Colorado, 2003 16

Activity Diagrams
! An activity diagram shows the steps of
a computation
! Each step is a state where the system is
doing something; aka an activity state

! activities take time to complete; if an activity
completes quickly, it is referred to as an action

! The diagram indicates the sequential
and/or concurrent flow of activity states

! The flow of control from one state to the next is
called a transition

February 6, 2003 © University of Colorado, 2003 17

Step 2, continued
! To find activities, we examine the main
and alternative flows of a use case
! (page 55 shows this analysis for the Order
Configured Computer use case; the
outcome is shown on page 56)

! Important: Use cases are written from the
perspective of an external actor; activities
however should be specified in terms of an
internal system’s viewpoint

February 6, 2003 © University of Colorado, 2003 18

Step 2, continued
! Once the activities have been found, we can
display their interactions using an activity
diagram (page 56)
! There is one initial state but there may be multiple
final states

! Some transitions are guarded
! The use of [timeout] indicates that the transition can only
be taken if the timeout event has occurred

! To complete the activity modeling step, an
activity diagram should be constructed for
each use case!

February 6, 2003 © University of Colorado, 2003 19

Step 3: Find Classes
! The tutorial now begins to construct a state
model, also known as a class model
! State is represented via the classes of objects that
the system contains, their attributes, operations,
and relationships

! These are shown in a class diagram
! Note: steps 2 and 3 are typically done in
parallel; or via rapid iteration between the two
! Use cases facilitate class discovery and vice versa,
class models can lead to the discovery of
overlooked use cases

February 6, 2003 © University of Colorado, 2003 20

Classes
! So far, we have used classes to define "business
objects”: Order, Shipment, Customer, etc.
! aka entity classes (model), because they represent long-
lived persistent database objects

! We also need other classes
! those that define GUI objects, aka boundary classes (view)
! those that control the program's logic, aka control classes

! Boundary and control classes may or may not be
addressed in requirements analysis (since they are
not a direct part of the application domain)
! as such their specification may be delayed until design

February 6, 2003 © University of Colorado, 2003 21

Step 3, continued
! To find classes, the tutorial returns to the
initial set of requirements
! we first used them to define use cases, now we
are looking for classes (pg. 58)

! This exercise may produce more classes
than needed
! these are referred to as candidate classes
! we must ask questions to eliminate unnecessary
classes

February 6, 2003 © University of Colorado, 2003 22

Classes: Asking Questions
! Is this a class?

! Is the concept a container for data?
! Does it have separate attributes that will
take on different values?

! Would it have many instance objects?
! Is it in the scope of the application domain?

! See page 59

February 6, 2003 © University of Colorado, 2003 23

Step 3, continued
! Having found a set of initial classes, the
next step is to determine the attributes
for each class
! Attributes define the structure of a class

! “obvious” attributes are added immediately
after the initial classes have been selected

! other attributes will be discovered as analysis
continues

! See page 60

February 6, 2003 © University of Colorado, 2003 24

Step 3, continued
! Associations are added next (page 61)

! Here, it is critical to use the use cases to
determine which classes need to communicate
with each other

! For instance, the Order Configured Computer use
case came from a requirement that gave rise to
the Customer, Order, and ConfiguredComputer
classes;

! this implies that these classes will need to share
information

February 6, 2003 © University of Colorado, 2003 25

Step 3, continued
! Aggregations and Generalizations can be
considered next
! Are there classes which are “composed” of other
classes

! Are some of the candidate classes specializations
or generalizations of other classes

! See page 62 (aggregations), 63
(generalizations), and 64 (completed class
diagram) for the evolution of the tutorial’s
class diagram

February 6, 2003 © University of Colorado, 2003 26

Step 4: Model Interactions
! Interaction modeling captures interactions
between objects that need to be performed to
satisfy a use case
! This type of modeling occurs once the class
diagram has stabilized

! Interaction modeling is similar to activity
modeling but at a lower level of abstraction
! Activity modeling shows the sequencing of events
without assigning those events to objects

! Interaction modeling shows the sequencing of
events (messages) between collaborating objects

February 6, 2003 © University of Colorado, 2003 27

Interaction Diagrams
! Two Types

! Sequence Diagram
! focus is on events over time

! Collaboration Diagram
! focus is on object relationships

! Our textbook uses sequence diagrams
in analysis and uses collaboration
diagrams in design

February 6, 2003 © University of Colorado, 2003 28

Interactions
! An interaction is a set of messages (that
define a behavior) exchanged between
objects over links

! A sequence diagram represents an
interaction with a two-dimensional graph
! with objects arrayed across the top
! event sequences shown top to bottom
! events occur between object lifelines as a
message from a sender to an operation in the
target (actual parameters can be specified)

February 6, 2003 © University of Colorado, 2003 29

More on Sequence Diagrams
! Showing the return of control from the target
to the calling object is not necessary
! however, it is sometimes done to show return
values;

! If a message needs to be sent to a collection
of objects, the message name is prefixed with
an asterisk, aka the iteration marker
! this means that the indicated message is sent to
each object in the collection

February 6, 2003 © University of Colorado, 2003 30

Step 4, continued
! The tutorial begins the iteration modeling
activity by picking the first activity state
(Display Current Configuration) of the activity
diagram developed in step 2
! and constructs a sequence diagram for it on page
66; a screen shot of a proposed user interface
after this interaction has completed execution is
also shown on page 66

! This diagram has led to the definition of
operations on some of the identified classes
(page 67)

February 6, 2003 © University of Colorado, 2003 31

Step 4, continued
! The tutorial then steps up a level of
abstraction and constructs a sequence
diagram for the entire activity diagram (pg 69)
! Note how certain details from the first sequence
diagram are hidden in the second diagram

! Part of analysis is deciding how much detail is “enough”
for the task at hand

! You may start by drawing the second diagram first in a
real analysis situation and then add detail to the
sequence diagram as you progress through analysis
(perhaps because you need more information about a
particular class)

February 6, 2003 © University of Colorado, 2003 32

Step 4, continued
! To finish interaction modeling, develop
sequence diagrams for each activity diagram
! Activity diagrams model the details of use cases;
these details help discover classes

! Sequence diagrams further elaborate the details
of activity diagrams; these new details help to
discover class operations

! Interaction modeling can be incremental
! you may only need to construct a few sequence
diagrams at first; return later to construct more

February 6, 2003 © University of Colorado, 2003 33

Step 5: Model Object States
! A state chart model gives a detailed
description of a class
! In much the same way that an interaction model
provides a detailed specification of a use case

! In particular, a statechart depicts how objects
of a particular class change state over time
! these state changes will typically describe the
behavior of an object across multiple use cases

! state, in this sense, is defined as the values of an
object’s attributes

February 6, 2003 © University of Colorado, 2003 34

Statechart Diagram
! A statechart diagram is a graph of
states (rounded rectangles) and
transitions (arrows) caused by events
! These “states” and “events” are the same
concepts that we know from activity
diagrams, except

! an activity diagram shows the states of
executing a computation

! while a statechart diagram documents the
states of a single object

February 6, 2003 © University of Colorado, 2003 35

States and transitions
! Objects change values of their attributes but
not all such changes cause state transitions
! Bank account example on page 70
! We construct state models for classes that have
“interesting” state changes, not just any state
changes

! The tutorial shows a possible statechart
diagram for the Invoice object on page 71
! again transitions are labeled with events

February 6, 2003 © University of Colorado, 2003 36

Statechart Diagram
! Normally attached to a class, but can be attached to
other modeling concepts, e.g. a use case

! When attached to a class, the diagram determines
how objects of that class react to events
! Determines – for each object state – what action the object
will perform when it receives an event

! The same object may perform a different action for the same
event depending on the object’s state

! The action’s execution will typically cause a state change

February 6, 2003 © University of Colorado, 2003 37

Statechart Diagram
! The complete description of a transition
consists of three parts
! event (parameters) [guard] / action

! event - a message, can have parameters
! guard - transition can only occur if guard is true
(otherwise the event is ignored)

! Action – short atomic computation that executes when
the transition fires

! can also be associated with a state, e.g. the action
executes when the state is entered (or exited)

! Activity – longer computation associated with a state

February 6, 2003 © University of Colorado, 2003 38

Statechart Diagrams, continued

! States can be composed of other states,
aka nested states
! The composite state is abstract, it is simply
a generic label for the nested states

! A transition taken out of the composite
state’s boundary means that it can fire from
any of the nested states

! this helps to avoid cluttered diagrams

February 6, 2003 © University of Colorado, 2003 39

Step 5, continued
! The tutorial develops a state diagram
for the Order class (page 72)
! It contains nested states, guarded
transitions, transitions from nested states,
and one action

! Statechart modeling continues until all
classes with “interesting” states have
been modeled with a statechart diagram

February 6, 2003 © University of Colorado, 2003 40

Step 6? Iterate!
! Having performed these steps, its time to
iterate
! each new model may reveal “missing” information
in the previous models

! Analysis continues until all models have stabilized
! At which point you are ready to move on to design

! What’s Next?
! Over the next few weeks, we will look at each of
these analysis steps (and their associated
diagrams) in more detail

