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Credit where Credit is Due
! Some material presented in this lecture
is taken from section 2.2 of Maciaszek’s
“Requirements Analysis and System
Design”. © Addison Wesley, 2000
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Goals for this Lecture
! Work through the tutorial in Section 2.2
of the textbook
! Provides overview of OO Analysis
! Provides insight into how UML is used
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Tutorial in Analysis Modeling
! Tutorial provides an example of analysis
modeling with respect to the task of “on-line
shopping”
! We will develop four types of models

! The use case model
! The state model
! The behavior model
! The state change model

! Slides will provide background information;
book will provide diagrams
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OnLine Shopping – Order Processing
! Buying computers via Internet - page 47
! The customer can select a standard
configuration or can build a desired
configuration online

! To place an order, the customer must fill out
the shipment and payment information

! The customer can check the order status
online at any time

! The ordered configuration is shipped to the
customer together with the invoice
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Step 1: Find Use Cases
! The tutorial begins by talking about use
cases
! Each use case represents a complete unit
of functionality that is required by an actor

! An actor is any entity that interacts with our
system; typically a human, but could also be an
external software system

! Since actors are external to the system, use
cases document outwardly visible and testable
system behavior
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Actors
! Consider the requirement: After the customer’s order has
been entered into the system, the salesperson sends an
electronic request to the warehouse with details of the
ordered configuration

Customer Salesperson Warehouse
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Use cases
! Consider the requirement

! The customer uses the shopping web page
to view the standard configuration of the
chosen server, desktop or portable
computer. The price is also shown

Display Standard
Computer Configuration
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Use Cases, continued
! Some use cases may not interact directly with
actors
! Instead, they support other use cases
! In particular, if several use cases each share a
common task, it makes sense to encapsulate the
common task in its own separate use case

! A use case diagram is a visual representation
of actors and use cases
! Note: UML diagram is synonymous with UML
model
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Step 1, continued
! The tutorial starts the process of
modeling by transforming the problem
statement (page 47) into a set of
extended requirements (page 48-49)
! These are not meant to be a complete list
of requirements; simply a first set that can
be derived directly from the problem
statement
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Step 1, continued
! Next, the requirements are placed in a
table to help identify use cases and
actors (pg. 50 and 51)
! Useful for deriving an initial set of use
cases;

! more will be found later as information about
the domain is discovered or as a result of
working on other models

! Some requirements lead to multiple use
case
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Step 1, continued
! Having identified use cases and actors, a use
case diagram can be constructed
! (page 52)

! A use case diagram is meant to show
relationships between use cases and actors
! Two types of relationships shown

! association - a communication path
! extend - a use case can define extension points where
behavior may be customized; an extends relationships
indicates that a use case is providing a customization of
another use case
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Narrative use case specification

! A use case diagram only shows
relationships between use cases
! it does not provide any information about
the details of a use case

! thus, each use case needs to be
documented textually (page 53); see next
slide
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Documenting use cases
! Brief Description
! Actors involved
! Preconditions necessary for the use case to start
! Detailed Description of flow of events that includes:

! Main Flow of events, that can be broken down to show:
! Subflows of events (subflows can be further divided into
smaller subflows to improve document readability)

! Alternative Flows to define exceptional situations

! Postconditions that define the state of the system
after the use case ends
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Step 2: Find Activities
! The textual information of a use case
provides details about the flow of events
that occur when carrying out its task
! This information can be depicted
graphically with an activity model
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Activity Diagrams
! An activity diagram shows the steps of
a computation
! Each step is a state where the system is
doing something; aka an activity state

! activities take time to complete; if an activity
completes quickly, it is referred to as an action

! The diagram indicates the sequential
and/or concurrent flow of activity states

! The flow of control from one state to the next is
called a transition
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Step 2, continued
! To find activities, we examine the main
and alternative flows of a use case
! (page 55 shows this analysis for the Order
Configured Computer use case; the
outcome is shown on page 56)

! Important: Use cases are written from the
perspective of an external actor; activities
however should be specified in terms of an
internal system’s viewpoint
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Step 2, continued
! Once the activities have been found, we can
display their interactions using an activity
diagram (page 56)
! There is one initial state but there may be multiple
final states

! Some transitions are guarded
! The use of [timeout] indicates that the transition can only
be taken if the timeout event has occurred

! To complete the activity modeling step, an
activity diagram should be constructed for
each use case!
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Step 3: Find Classes
! The tutorial now begins to construct a state
model, also known as a class model
! State is represented via the classes of objects that
the system contains, their attributes, operations,
and relationships

! These are shown in a class diagram
! Note: steps 2 and 3 are typically done in
parallel; or via rapid iteration between the two
! Use cases facilitate class discovery and vice versa,
class models can lead to the discovery of
overlooked use cases
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Classes
! So far, we have used classes to define "business
objects”: Order, Shipment, Customer, etc.
! aka entity classes (model), because they represent long-
lived persistent database objects

!  We also need other classes
! those that define GUI objects, aka boundary classes (view)
! those that control the program's logic, aka control classes

! Boundary and control classes may or may not be
addressed in requirements analysis (since they are
not a direct part of the application domain)
! as such their specification may be delayed until design
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Step 3, continued
! To find classes, the tutorial returns to the
initial set of requirements
! we first used them to define use cases, now we
are looking for classes (pg. 58)

! This exercise may produce more classes
than needed
! these are referred to as candidate classes
! we must ask questions to eliminate unnecessary
classes
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Classes: Asking Questions
! Is this a class?

! Is the concept a container for data?
! Does it have separate attributes that will
take on different values?

! Would it have many instance objects?
! Is it in the scope of the application domain?

! See page 59

February 6, 2003 © University of Colorado, 2003 23

Step 3, continued
! Having found a set of initial classes, the
next step is to determine the attributes
for each class
! Attributes define the structure of a class

! “obvious” attributes are added immediately
after the initial classes have been selected

! other attributes will be discovered as analysis
continues

! See page 60
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Step 3, continued
! Associations are added next (page 61)

! Here, it is critical to use the use cases to
determine which classes need to communicate
with each other

! For instance, the Order Configured Computer use
case came from a requirement that gave rise to
the Customer, Order, and ConfiguredComputer
classes;

! this implies that these classes will need to share
information
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Step 3, continued
! Aggregations and Generalizations can be
considered next
! Are there classes which are “composed” of other
classes

! Are some of the candidate classes specializations
or generalizations of other classes

! See page 62 (aggregations), 63
(generalizations), and 64 (completed class
diagram) for the evolution of  the tutorial’s
class diagram
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Step 4: Model Interactions
! Interaction modeling captures interactions
between objects that need to be performed to
satisfy a use case
! This type of modeling occurs once the class
diagram has stabilized

! Interaction modeling is similar to activity
modeling but at a lower level of abstraction
! Activity modeling shows the sequencing of events
without assigning those events to objects

! Interaction modeling shows the sequencing of
events (messages) between collaborating objects
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Interaction Diagrams
! Two Types

! Sequence Diagram
! focus is on events over time

! Collaboration Diagram
! focus is on object relationships

! Our textbook uses sequence diagrams
in analysis and uses collaboration
diagrams in design
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Interactions
! An interaction is a set of messages (that
define a behavior) exchanged between
objects over links

! A sequence diagram represents an
interaction with a two-dimensional graph
! with objects arrayed across the top
! event sequences shown top to bottom
! events occur between object lifelines as a
message from a sender to an operation in the
target (actual parameters can be specified)
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More on Sequence Diagrams
! Showing the return of control from the target
to the calling object is not necessary
! however, it is sometimes done to show return
values;

! If a message needs to be sent to a collection
of objects, the message name is prefixed with
an asterisk, aka the iteration marker
! this means that the indicated message is sent to
each object in the collection
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Step 4, continued
! The tutorial begins the iteration modeling
activity by picking the first activity state
(Display Current Configuration) of the activity
diagram developed in step 2
! and constructs a sequence diagram for it on page
66; a screen shot of a proposed user interface
after this interaction has completed execution is
also shown on page 66

! This diagram has led to the definition of
operations on some of the identified classes
(page 67)
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Step 4, continued
! The tutorial then steps up a level of
abstraction and constructs a sequence
diagram for the entire activity diagram (pg 69)
! Note how certain details from the first sequence
diagram are hidden in the second diagram

! Part of analysis is deciding how much detail is “enough”
for the task at hand

! You may start by drawing the second diagram first in a
real analysis situation and then add detail to the
sequence diagram as you progress through analysis
(perhaps because you need more information about a
particular class)
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Step 4, continued
! To finish interaction modeling, develop
sequence diagrams for each activity diagram
! Activity diagrams model the details of use cases;
these details help discover classes

! Sequence diagrams further elaborate the details
of activity diagrams; these new details help to
discover class operations

! Interaction modeling can be incremental
! you may only need to construct a few sequence
diagrams at first; return later to construct more
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Step 5: Model Object States
! A state chart model gives a detailed
description of a class
! In much the same way that an interaction model
provides a detailed specification of a use case

! In particular, a statechart depicts how objects
of a particular class change state over time
! these state changes will typically describe the
behavior of an object across multiple use cases

! state, in this sense, is defined as the values of an
object’s attributes
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Statechart Diagram
! A statechart diagram is a graph of
states (rounded rectangles) and
transitions (arrows) caused by events
! These “states” and “events” are the same
concepts that we know from activity
diagrams, except

! an activity diagram shows the states of
executing a computation

! while a statechart diagram documents the
states of a single object
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States and transitions
! Objects change values of their attributes but
not all such changes cause state transitions
! Bank account example on page 70
! We construct state models for classes that have
“interesting” state changes, not just any state
changes

! The tutorial shows a possible statechart
diagram for the Invoice object on page 71
! again transitions are labeled with events
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Statechart Diagram
! Normally attached to a class, but can be attached to
other modeling concepts, e.g. a use case

! When attached to a class, the diagram determines
how objects of that class react to events
! Determines – for each object state – what action the object
will perform when it receives an event

! The same object may perform a different action for the same
event depending on the object’s state

! The action’s execution will typically cause a state change
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Statechart Diagram
! The complete description of a transition
consists of three parts
! event (parameters) [guard] / action

! event - a message, can have parameters
! guard - transition can only occur if guard is true
(otherwise the event is ignored)

! Action – short atomic computation that executes when
the transition fires

! can also be associated with a state, e.g. the action
executes when the state is entered (or exited)

! Activity – longer computation associated with a state
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Statechart Diagrams, continued

! States can be composed of other states,
aka nested states
! The composite state is abstract, it is simply
a generic label for the nested states

! A transition taken out of the composite
state’s boundary means that it can fire from
any of the nested states

! this helps to avoid cluttered diagrams
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Step 5, continued
! The tutorial develops a state diagram
for the Order class (page 72)
! It contains nested states, guarded
transitions, transitions from nested states,
and one action

! Statechart modeling continues until all
classes with “interesting” states have
been modeled with a statechart diagram
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Step 6? Iterate!
! Having performed these steps, its time to
iterate
! each new model may reveal “missing” information
in the previous models

! Analysis continues until all models have stabilized
! At which point you are ready to move on to design

! What’s Next?
! Over the next few weeks, we will look at each of
these analysis steps (and their associated
diagrams) in more detail


