
Lecture 6: Descriptions

Kenneth M. Anderson
Object-Oriented Analysis and Design
CSCI 6448 - Spring Semester, 2003

January 30, 2003 © University of Colorado, 2003 2

Goals for this Lecture
! Discuss two types of descriptions

! designations and definitions
! Discuss two states for a description

! refutable and rough sketch
! Discuss Events and Intervals

! adding the notion of time to descriptions
! Discuss two generic characteristics of
descriptions
! Scope and Span

! Have another class activity session

January 30, 2003 © University of Colorado, 2003 3

Descriptions
! Descriptions are the central activity of software
engineering

! They are manifestations of thought
! if you understand how descriptions work, and how they can
differ from one another, you can improve how you think
about problems

! “thinking about descriptions is thinking about thinking”

! this, then, is why we often have so many different notations
for expressing problems and solutions

! each represents a different way of thinking

January 30, 2003 © University of Colorado, 2003 4

Descriptions: Types and States
! Description Types

! Designations
! phenomena of interest

! Definitions
! a formal statement of a term (can be used by other
descriptions)

! Description States
! Refutable Descriptions

! describes a domain, saying something that could, in principle,
be refuted or disproved

! Rough Sketches
! a tentative description of something that is still being explored
or invented; uses undefined terms

January 30, 2003 © University of Colorado, 2003 5

Designations
! A designation singles out a kind of phenomenon as
being of interest, and gives it a name

! They provide us with the tool we need to identify the
important elements of our problem domains

! They consist of a recognition rule on the left. On the
right, after a designation symbol “≈”, is the
designated term.

! Designations are, thus, informal; they rely on natural
language to describe the recognition rule, which
requires a human to interpret; however they can be
used to build formal definitions, as we shall see

January 30, 2003 © University of Colorado, 2003 6

Example Designations
! x is a human being (Homo sapiens) ≈ Human(x)
! x is male ≈ Male(x)
! x is female ≈ Female(x)
! x is the biological mother of y ≈ Mother(x, y)
! x is the biological father of y ≈ Father(x, y)

January 30, 2003 © University of Colorado, 2003 7

More on Designations
! Designations must be…

! phenomena that are clearly and unambiguously
recognizable in the domain; with good recognition
rules

! …within reason; since most domains are
informal, there will always be exceptions;
! but do “well enough” for the purposes of the
system that you are building

! If you cannot write a good recognition rule you
have probably chosen an unsuitable phenomenon

! You need to choose your designations carefully because
they form the foundation of all your descriptions!

January 30, 2003 © University of Colorado, 2003 8

Definitions
! Every term you use in a description
should be defined
! One way to define a term is to give a
designation

! Once you have designations, you can
build on them
! ∀ x,y • ((Human(x) ∧ (Mother(x,y)) →
(Female(x) ∧ Human(y)))

January 30, 2003 © University of Colorado, 2003 9

Definitions are…
! …relationships among designations
! Referring back to our previous example, how
would you introduce the concept of brother?
! as a designation?
! x is the genetic brother of y ≈ Brother(x,y)

! This is not quite right…why introduce another
designation, when we can formally define the
term with a definition?
! definition: designated term ! assertion

January 30, 2003 © University of Colorado, 2003 10

Defining Brother
! Define the term Brother using the existing
designations and predicate logic, this formalizes the
term
! Brother(x,y) ! Male(x) ∧ ∃ f • (Father(f,x) ∧ Father(f,y)) ∧ ∃
m • (Mother(m,x) ∧ Mother(m,y))

! Careful use of definitions keeps the number of
designations small; this, in turn, makes it easier to
understand your descriptions
! plus, in this particular instance, a brother is not really a
separately observable phenomena from the designations
you have so far, its simply a certain kind of relationship
between them

January 30, 2003 © University of Colorado, 2003 11

Building on Definitions
! Once you have some definitions, you
can use them to create more definitions
! helping you to grow the number of formal
descriptions you have to apply to your
software development project

! Uncle(x,y) ! ∃ p • ((Father(p,y) ∨
Mother(p,y)) ∧ Brother(x,p))

January 30, 2003 © University of Colorado, 2003 12

Definitions are not Assertions
! Definitions cannot be true or false

! only well-formed or badly formed
! only useful or not useful

! Think of it as a substitution
! if I have an expression

! ((Father(Ken,Kevin) ∨ Mother(Ken,Kevin)) ∧
Brother(Don,Ken))

! I can substitute the phrase
! Uncle(Don, Kevin)

January 30, 2003 © University of Colorado, 2003 13

Refutable Descriptions (I)
! When we make assertions about a domain,
we want them to be refutable
! that is, we want it to be possible that someone can
prove that the assertion is wrong

! Why would we want to do that?
! because, for one, all of science is based on that
notion! Respectable scientific theories are
refutable

! if it holds up under scrutiny, people gain confidence in
the theory and build new theories on top of it

January 30, 2003 © University of Colorado, 2003 14

Refutable Descriptions (II)
! Why would we want to do that? (cont.)

! Second, it forces us to be explicit and clear
about our assertions, at a point when we
are surrounded by uncertainty

! Take, for example, a requirement that says
“The software system must be responsive.”

! This type of statement is completely useless
! and can’t be refuted; if a system takes 100 hours to
respond to a button click, the above requirement has
been satisfied!

January 30, 2003 © University of Colorado, 2003 15

Refutable Descriptions (III)
! Instead say,

! The system must provide feedback to a
button click in .5 seconds, either by
displaying the requested output or by
presenting a “spinning” cursor

! This is a solid, specific requirement that
can be refuted

January 30, 2003 © University of Colorado, 2003 16

Taking risks
! Refutable Descriptions Create Risks

! Domain descriptions describe how things are in
the system’s environment or application domain

! Refutable domain descriptions run the risk of someone
saying “That’s not true - here’s a counterexample”

! Why is this good?
! Requirement descriptions describe how things
ought to be when the system is installed

! Runs the risk of someone saying “No, that’s not the
effect I require” or, later “Yes, that was the effect I
required, but the system isn’t achieving it…”

January 30, 2003 © University of Colorado, 2003 17

The importance of
designations
! In order to create refutable descriptions, you
need crisp and clear designations
! This is the importance of a recognition rule

! it eliminates ambiguity from a domain by allowing us to
classify a particular phenomena

! You then create refutable descriptions by
creating a set of assertions using these crisp
and clear designations
! It lets your users find counterexamples and helps
to create a shared understanding of the problem

January 30, 2003 © University of Colorado, 2003 18

An Example
! A plain segment of track is a continuous stretch of single track with its

sole entry point at the entry of the segment, and the sole exit point at
the exit of the segment. A fork switch is a configuration with one entry
and two exits; and a join switch is a configuration with two entries and
one exit. Plain segments, fork switches, and join switches are all
subtypes of the type track unit.

! A rail network consists of an assemblage of track units such that each
exit of each unit is connected to an entry of a different unit, and vice
versa. Two units with a connected entry and exit are said to be
adjacent.

! Is this a refutable description?
! How about: the entries of a join switch are always
attached to the exit of a plain segment of track

January 30, 2003 © University of Colorado, 2003 19

Rough Sketches
! A description of something that is only partially
understood or invented
! They record vague, half-formed ideas when you do not have
the time to be precise (say because, you are being precise
about some other aspect of the application domain, that day)

! The defining characteristic of a rough sketch is it
vagueness; vagueness is common if a development
project starts by focusing on the machine and not the
application domain
! because in that situation, the machine does not exist yet!

January 30, 2003 © University of Colorado, 2003 20

Rough Sketches have their place

! Sometimes its impossible to be precise about
some aspect of the application domain
! the application domain is informal, after all
! and rough sketches appear typically at the
beginning of a development project when the
application domain is still being understood

! but often the rough sketch is the “cuckoo” in
the software development nest pushing out all
other types of descriptions

January 30, 2003 © University of Colorado, 2003 21

Class Activity Section
! Develop instances of each type of description,
discussed today for
! problem: moving people from floor to floor in a building using
elevators

! problem context: people, floors, elevators, etc.

! Goal: Model the application domain not the Machine
! Start with either a rough sketch or precise
designations and go from there

January 30, 2003 © University of Colorado, 2003 22

Dynamic Domains
! Dynamic Domains have state

! This state changes over time
! To model this change, we introduce

! events
! intervals

! To model states, without worrying about
state changes, we can use

! points in time

January 30, 2003 © University of Colorado, 2003 23

Points in Time
! p is a point in time ≈ TimePoint(p)
! The point p precedes the point q in time ≈
Precedes(p,q)

! This way of treating time lets you talk about
states, about what is true in the world at a
particular point in time
! but its not particularly helpful in talking about state
changes

January 30, 2003 © University of Colorado, 2003 24

A TimePoint Example
! A Traffic Intersection

! The North-South light is red at time p ≈ NSRed(p)
! The North-South light is green at time p ≈
NSGreen(p)

! The East-West light is red at time p ≈ EWRed(p)
! The East-West light is green at time p ≈
EWGreen(p)

! An associated description
ν ∀ p • (TimePoint(p) →((NSRed(p) ∨EWRed(p)) ∧ (NSRed(p)
→ ∃ q • (Precedes(p,q) ∧ NSGreen(q))) ∧ (EWRed(p) → ∃ q
• (Precedes(p,q) ∧ EWGreen(q)))))

January 30, 2003 © University of Colorado, 2003 25

Events and Intervals
! If we want to model changes of state,
we need to think about intervals of time
that are split by events
! events are atomic (they cannot be
interrupted) and instantaneous (time does
not progress during an event)

! intervals occur between events
! state does not change during an interval

January 30, 2003 © University of Colorado, 2003 26

Events and Intervals,
Continued
! Designations

! e is an atomic instantaneous event ≈ Event(e)
! The event e occurs before the event f ≈ Earlier(e,f)
! v is an interval of time in which no event occurs ≈ Intvl(v)
! The event e begins the interval v ≈ Begins(e,v)
! The event e ends the interval v ≈ Ends(e,v)

! Definitions
! InitIntvl(v) ♦ Intvl(v) ∧¬ ∃ e • Begins(e,v)
! FinalIntvl(v) ♦ Intvl(v) ∧¬ ∃ e • Ends(e,v)

! Note: the definitions make InitIntvl() and FinalIntvl()
available without implying that they are true of any
individual interval

January 30, 2003 © University of Colorado, 2003 27

Discussion
! In this model, events cannot occur at the
same time
! Earlier(a, b) means that a occurs before b
! The restriction is that an event represents a
transition of the world from one state to another
without passing through any intermediate state

! This means that any action that has an internal
time structure must be regarded as two or more
events

! In addition, abstraction plays a key role
! what is the appropriate “event” for a chess game?

January 30, 2003 © University of Colorado, 2003 28

Bank Example
! In event e, account a is debited cash amount
m ≈ Debit(e,a,m)

! In event e, account a is credited cash amount
m ≈ Credit(e,a,m)

! How do you treat a transfer?
! As a single transaction?
! As two events?
! What about a transfer in which the debit account
and the credit account are the same?

! Does the balance of the account dip?

January 30, 2003 © University of Colorado, 2003 29

Modeling State Changes
! In an event-interval view of the world, nothing
changes without an event

! If a fact does not reference an interval, then it
is a phenomena that does not change
! Lecturer t teaches course c ≈ Teaches(t,c)

! In an event-interval system, this would imply
that teacher t has taught course c eternally

! To give our teachers a break, try
! Lecturer t teaches course c in interval v ≈
Teaches(t,c,v)

January 30, 2003 © University of Colorado, 2003 30

An Event-Interval Example
! A light bulb

! In interval v, the light is on ≈ On(v)
! In interval v, the light is off ≈ Off(v)
! In event e, the button is pressed ≈ Press(e)

Off On

Press

Press

January 30, 2003 © University of Colorado, 2003 31

Associated Descriptions
! Switch must be on or off in any particular
interval, its initial state is off
! ∀ v • ((On(v) → ¬Off(v)) ∧ (Intvl(v) → (On(v) ∨
Off(v))) ∧ (InitIntvl(v) → Off(v)))

! The light changes state via Press events
! ∀ v,w,e • ((Ends(e,v) ∧ Begins(e,w)) → (((On(v) ∧
Off(w)) ∨ (Off(v) ∧ On(w)))) ↔ Press(e))

January 30, 2003 © University of Colorado, 2003 32

Why do we need descriptions?

! Why do we need more than one type?
! You will not be able to express everything
about a software problem using one type of
description

! The complexity of software problems do
not allow you to think about the whole
problem at once

! So, identify distinct aspects and describe them
separately; this is known as separation of
concerns

January 30, 2003 © University of Colorado, 2003 33

Scope
! A useful description has a carefully defined
scope
! What domain are you describing?
! What phenomena are you describing?
! Example: maps

! Map of the earth or map of the moon?
! Rainfall map or Population map?

! For the former, you might create a designation like “The
average annual rainfall in area a is r ≈ rainavg(a,r)”

January 30, 2003 © University of Colorado, 2003 34

More on Scope

Domain DescriptionDesignation Set

Descriptions are connected to domains by designation
sets; the designation set provides the vocabulary the
description can use in describing the domain

The designation set, in fact, determines the scope of the
description, since you cannot talk about non-designated
phenomena…

…well you can, but then you have a rough sketch

January 30, 2003 © University of Colorado, 2003 35

An example
! x is a company employee in time interval y ≈ Comp(x,y)
! x is a time interval in the life of the company ≈ Intl(x)
! x is the manager of y in interval z ≈ Superior(x, y, z)

! A description can talk about the relationships among these phenomena,
but no others!

! Comp(x,y) is not true unless Intl(y) is true; and
! Superior(x,y,z) is not true unless both Comp(x,z) and Comp(y,z) are

true; and
! Superior(x1,y,z) and Superior(x2,y,z) are not both true unless x1 and

x2 are the same individual; and
! In any interval z, there is exactly one individual y for which Super(x,y,z)

is false for every x

January 30, 2003 © University of Colorado, 2003 36

Span
! A useful description also has a span

! which is the particular subset of the
designated phenomena that it includes

! return to the Map example
! for a population map, we need to know what
part of the world’s surface is depicted; and

! we need to know whether it is the population in
1990 or in 1800 that is shown

January 30, 2003 © University of Colorado, 2003 37

Span Example
! “Thank you for your call. We value it highly. It
will be answered in the order in which it was
received.”

! What’s wrong with the proceeding sentence?
! Hint: “All calls are answered in the order in which
they are received.”

! The scope selects a domain’s individuals; the
span selects a subset of those individuals
! limiting a description’s span can help to focus your
attention on particular sub-problems

January 30, 2003 © University of Colorado, 2003 38

Setting Span
! Scope and Span are closely related;

! in fact you can express a reduced span by
introducing new terms that help to narrow your
scope

! For example
! x is a citizen of country y ≈ CountryCitizen(x,y)
! dCitizen ♦ CountryCitizen(x,Denmark)

! Using dCitizen in a description reduces its span to
the citizen’s of Denmark (rather than the citizens
of the entire world)

January 30, 2003 © University of Colorado, 2003 39

Setting Span: Rule of Thumb
! Choose a span of description that
allows you to say exactly what you want
to say
! A smaller span would prevent you from
saying everything you want

! A larger span would force you to say too
much

! Saying too much reduces the context
independence of a description

January 30, 2003 © University of Colorado, 2003 40

Scope and Span Benefits
! The concepts of scope and span can be very
useful to a designer
! When in the process of design, you can ask
questions such as

! Am I making the right kind of separation?
! Am I using the wrong scope?
! Am I using the wrong span?

! Sometimes a problem seems hard, when in fact it
is an easy problem surrounded by irrelevant and
confusing material

January 30, 2003 © University of Colorado, 2003 41

An example
! In a Knock-Out Tennis Tournament, if the number of competitors is a

power of 2 —say, 2 to the nth power—then there will be n rounds. In
each round, half of the players in the round are eliminated, and the
other half go forward to the next round, in which there will be only half
as many matches. Eventually, there will be a round with only one match,
and the winner of that match is the winner of the tournament. If the
number of competitors is not a power of 2, then some of them miss the
first round, and proceed directly to the second round; from the second
round onwards, everything continues as normal.

! The question is: If there are 111 competitors, how many matches are
there in the whole tournament?

January 30, 2003 © University of Colorado, 2003 42

Questions
! What’s the smallest possible scope
relating competitors and matches?

! What’s the smallest span?
! What’s the problem with the proceeding
example? Hint: it has to do with its
scope and span

