
Lecture 4: Fundamentals of
Object Technology

Kenneth M. Anderson
Object-Oriented Analysis and Design
CSCI 6448 - Spring Semester, 2003

January 23, 2003 © University of Colorado, 2003 2

Credit where Credit is Due
! Some material presented in this lecture
is taken from section 2.1 of Maciaszek’s
“Requirements Analysis and System
Design”. © Addison Wesley, 2000

January 23, 2003 © University of Colorado, 2003 3

Goals for this Lecture
! Introduce fundamental object-oriented
concepts
! classes, objects, attributes, methods,
associations, encapsulation, inheritance,
polymorphism, etc.

! to lay the foundation for using these
concepts in object-oriented analysis

January 23, 2003 © University of Colorado, 2003 4

“Real-World” Objects
! The world consists of objects in a particular
state
! a full coffee mug
! a tired athlete

! Some objects exhibit behavior
! a dog barks

! All objects have identity
! a property that allows us to distinguish one object
from another

January 23, 2003 © University of Colorado, 2003 5

More on identity
! If we examine two cups from the same set of
china, we may say that the cups are equal but
not identical

! They are equal because they have the same
set of attributes (size, shape, color, …) and
they have the same values for each of their
attributes
! but they are two distinct cups and we can select
among them; no two objects can have the same
identity (otherwise they would be the same object)

January 23, 2003 © University of Colorado, 2003 6

Artificial and Natural Systems
! Since natural systems consist of objects and can
exhibit complex behavior…

! …perhaps we can construct artificial systems by
emulating the structure and behavior of natural
systems

! The object-oriented approach to software
development is based on this premise;
! we model the real world using objects

! the behavior and state of these objects capture the information
of real-world tasks

! we implement systems with these objects to support the
automation of the modeled tasks

January 23, 2003 © University of Colorado, 2003 7

Instance Object
! An object is an instance of a class

! A class is a generic description of all of its possible
instances

! in particular it specifies the set of attributes its objects possess
and the set of behaviors its objects can perform

! Note: we sometimes need an object that represents a
class, or a class object
! this enables reflection

! the ability for objects to ask questions about their own
characteristics, such as “how many operations do I have?”

! and attributes and operations that are not associated with
any particular instance of a class but with the class itself

January 23, 2003 © University of Colorado, 2003 8

Object Notation
! The UML notation for an object is a rectangle
with two compartments
! the upper compartment specifies an object’s name
and its class separated by a colon; both are
underlined

! Ken : Employee -- an object Ken of the Employee class
! Ken : -- an object whose type is not known
! : Employee -- an unnamed object

! the lower compartment lists the values the object
has for its attributes

January 23, 2003 © University of Colorado, 2003 9

Object Notation, continued

Ken : Employee

Name = “Ken”
Start_Date = “Fall 1998”

January 23, 2003 © University of Colorado, 2003 10

Object Collaboration
! The number of instances for a class can be
very large
! as such objects are rarely drawn

! Typically, they are only drawn to demonstrate
how certain objects collaborate over time to
accomplish a task

! Tasks are performed by objects invoking
operations (behavior) on each other
! an operation is invoked by passing the target
operation a message, aka message passing

January 23, 2003 © University of Colorado, 2003 11

Object Collaboration, cont.
! A message specifies the name of an
operation and provides values for that
operation’s parameters (if any)

! Once invoked, the operation may result in a
change of state or…
! a change in an object’s attribute values

! …it may lead to the target object invoking
operations on additional objects

January 23, 2003 © University of Colorado, 2003 12

Object Collaboration, cont.

An Order object requests a
Shipment object to ship its
products. To do so, the
Shipment object instructs
the Stock object to decrease
its inventory; later the Stock
object may analyze its
inventory levels and reorder
any required products

:Order

:Shipment :Stock

:Purchase

1: shipOrder()

2: subtractProducts()

3: analyzeStockLevels()

4: reorderProducts()

January 23, 2003 © University of Colorado, 2003 13

Identifying Objects
! How does an object learn the identity of an
object to which it wants to send a message?
! How does the Order object find the Shipment
object in order to send the shipOrder message?

! Each object is given an object identifier (OID)
when it is created
! this identifier is a unique number that remains with
the object for its entire life (from the time it’s
created until it’s destroyed)

! So, the OID of the Shipment object must be
passed to the Order object; how is this done?

January 23, 2003 © University of Colorado, 2003 14

Identifying Objects, continued
! A link provides a means for one object to
know the OID of another object
! links can be persistent or transient

! The type of link used in a given situation
depends on the longevity of objects
! transient objects live only as long as a program
executes

! persistent objects outlive the execution of the
program; they are stored persistently to be
accessed on subsequent program runs

January 23, 2003 © University of Colorado, 2003 15

Identifying Objects, continued
! A persistent link is an object reference
in a persistent object to another
persistent object
! Hence, to persistently link a Course object
to a Teacher object, both objects must be
persistent and the OID of the Teacher
object must be stored in the Course object
as the value of a link attribute

January 23, 2003 © University of Colorado, 2003 16

A Persistent Link

c : Course

Name = “CSCI 6448”
teacher = Ref123

Ref345
t : Teacher

Name = “Ken”

Ref123

The Course object has an attribute named teacher that stores a reference to the OID
of its instructor. Both the Course and Teacher objects are persistent. This is
indicated by placing their OIDs in the upper right hand corner of their object
representations. When these objects are written to disk, the reference in Course is
saved too. When these objects are read from disk, the reference in Course is once
again set to the OID of the Teacher object; In this particular set-up, only the Course
object can invoke operations on the Teacher object, the Teacher object is unaware
of the existence of the Course object.

January 23, 2003 © University of Colorado, 2003 17

A Persistent Link, continued

c : Course

Name = “CSCI 6448”

t : Teacher

Name = “Ken”
teacher

course
! Teaches

During analysis and design, we rarely care about the specific OIDs of objects;
instead we care about the relationships that exist between objects; As such a
persistent link is represented in the UML as an instance of an association that
exists between the object’s classes; Here we show that Teacher and Course objects
participate in a “teaches” association with two roles, than can be used to navigate
the association from one end to the other. Note, in the previous slide only the
Course object could call on the Teacher object; on this slide, we have delayed that
decision, this notation allows either object to call upon the other (there are ways to
specify the direction of an association which we will cover later in the semester)

January 23, 2003 © University of Colorado, 2003 18

Transient Links
! Transient links are similar to persistent
links, except that the link is established
at run-time and is not made persistent
! Thus, if I have multiple Course objects and
I loop over them

! Then, the loop variable is temporarily
storing the OID for each Course object and
establishing a transient link to a new
Course object for each iteration of the loop

January 23, 2003 © University of Colorado, 2003 19

Classes
! A class is a generic descriptor for a set of objects that
have the same attributes and operations
! It serves as a template for object creation
! Each object created from the template has space allocated
for each attribute specified in the template and can invoke
the operations defined in its class

! The notation for a class is a rectange with three
compartments; one for the name, one for attributes,
and one for operations
! the UML actually defines four compartments; we will discuss
the fourth compartment later in the semester

January 23, 2003 © University of Colorado, 2003 20

Class Notation

January 23, 2003 © University of Colorado, 2003 21

Attributes
! An attribute is a type-value pair

! Classes define attribute types
! Objects contain attribute values

! An attribute can be a built-in primitive type (that is
supplied by an object-oriented programming
language) or it can be another class
! In objects, an attribute with a class-based type contain OIDs
to objects of the specified class

! In UML, class-based attributes are not listed in the attribute
compartment, instead they are represented as associations

January 23, 2003 © University of Colorado, 2003 22

Attribute Visibility
! Not all attributes (and operations) are
available to objects who have a link to
another object
! The visibility of an attribute determines who can
access and manipulate the value of the attribute

! private visibility (indicated by prefixing the attribute name
with a minus sign) means that the attributes can only be
manipulated by instances of that class

! public visibility (indicated by prefixing the attribute name
with a plus sign) means that the attributes can be
manipulated by instances of all classes

! there is also protected visibility, which we will discuss
later

January 23, 2003 © University of Colorado, 2003 23

Attribute Visibility, continued
! Most operations are public, but most
attributes are private
! Operations are said to encapsulate attributes;
protect them from being changed in unauthorized
ways

! This is important since a class may have a set of
attributes that need to be updated in tandem

! if an object of another class changes an object’s
attribute, it may not know to update the values of
the other associated attributes

! This can cause an object’s values to get out of synch and
potentially lead to system failures

January 23, 2003 © University of Colorado, 2003 24

Operations
! An operation is an algorithm that acts on attributes
! Operations are implemented by methods
! Operations are invoked by messages or events

! the name of the message and the name of the invoked
operation are the same

! a message can pass parameter data to an operation and an
operation can return a value to the object that sent the
message

! The name of an operation together with a list of its
parameter types is called the operation’s signature
! A signature must be unique within a class; this means that a
class can have multiple operations with the same name just
as long as their parameter types are different

January 23, 2003 © University of Colorado, 2003 25

Operation Visibility and Scope
! Operation visibility is the same as attribute
visibility; it determines if objects of other
classes can see and invoke an object’s
operations

! Operation scope is a distinct concept that
determines if an operation acts on objects
(instance scope) or class objects (class
scope)
! Example in textbook: The age of an employee vs.
the average age of all employees

January 23, 2003 © University of Colorado, 2003 26

Associations
! An association is a type of relationship
between classes
! other types of relationships include
generalization, aggregation, dependency,
etc.

! As we have seen, associations govern
the linkage between objects of
particular classes

January 23, 2003 © University of Colorado, 2003 27

Associations, continued
! Association degree defines the number of classes
that can be connected by an association
! A binary association is the most common, although unary
and ternary associations can be specified (see page 38)

! Association multiplicity defines how many objects
may fill the position identified by a role name
! The multiplicity states how many objects of the target class
can be associated with a single object of the source class

January 23, 2003 © University of Colorado, 2003 28

Multiplicity Example
! To interpret a multiplicity always assume a “1” is at the opposite
end of the association, for example,
! a person may have only one employer
! a company may have one or more employees

! The multiplicity is shown as a range of integers n1..n2. n1 defines
the minimum number of connected objects, while n2 defines the
maximum number; page 39 shows common multiplicities

Person Companyemployee employer
1..* 1

January 23, 2003 © University of Colorado, 2003 29

Association Class
! Sometimes an association has
attributes and/or operations of its own
! Such an association must be modeled as a
class (because attributes can only be
defined in a class)

Company Person

Job

January 23, 2003 © University of Colorado, 2003 30

Aggregation and Composition
! Aggregation is a whole-part relationships
between a class representing an assembly of
components and the classes representing the
components themselves
! The containment property can be strong
(containment by value) or weak (containment by
reference)

! In the UML, containment by value is known as
composition

January 23, 2003 © University of Colorado, 2003 31

Aggregation/Composition, cont.
! In modeling, aggregation is a special kind of
association which is transitive and
asymmetric
! Transitive: If A contains B and B contain C, then A
contains C

! Asymmetric: If A contains B, then B cannot contain
A

! Composition has an additional constraint of
existence dependency
! If the container is deleted, its contents are deleted
as well; the contents cannot exist without being
contained

January 23, 2003 © University of Colorado, 2003 32

Examples

Crate Bottle
*

Book Chapter
*

Aggregation:

Composition:

January 23, 2003 © University of Colorado, 2003 33

Generalization
! Generalization is a kind-of relationship
between a more generic class
(superclass or parent) and a more
specialized class (subclass or child)
! Since a subclass is a particular type of the
superclass, an object of the subclass can
be used anywhere an object of the
superclass is allowed

January 23, 2003 © University of Colorado, 2003 34

Generalization, continued
! Subclasses may reuse any of the
attributes and operations defined by its
superclass (it is said to inherit these
features from the superclass)
! A generalization is notated with a hollow
triangle on a line connecting the superclass
and subclass

January 23, 2003 © University of Colorado, 2003 35

Example

Shape

Rectangle

Square

Generalization

An instance of Square will
contain all the attributes and
operations defined for
Square, Rectangle, and
Shape;

Any place a Shape object
can be used in a program, a
Square object can be
substituted (since it has the
same attributes and
operations that Shape does)

January 23, 2003 © University of Colorado, 2003 36

Polymorphism
! An inherited operation from a superclass can be
overridden (modified) in a subclass to correspond to
semantic variations of the subclass
! For instance, calculatePerimeter() will be implemented
differently in Square than it would be for Circle()

! This is indicated by placing a superclass operation with the
same name and parameters in the subclass

! Calls to such methods are polymorphic (many forms) in that
the most specific implementation of the method will be
invoked based on the class of the target object

January 23, 2003 © University of Colorado, 2003 37

Polymorphism, continued
! Thus, if we have an array of Shape objects, in which
some objects are Squares and some are Circles, the
following code can correctly calculate the sum of all
their perimeters
! for (i = 1; i < shapes.length; i++) {

! Shape s = shapes[i];
! totalPerimeter += s.getPerimeter()

! }
! Note that we call getPerimeter() on a Shape object,
but if the shape is a Square then it is Square’s
getPerimeter() method that executes and likewise if
the shape is a Circle then Circle’s getPerimeter()
executes

January 23, 2003 © University of Colorado, 2003 38

Multiple Inheritance
! Some object-oriented programming
languages will allow a subclass to
inherit from multiple superclasses
! A “diamond” in the inheritance structure
can cause problems; consider Figure 2.19
on page 44 of the textbook

! An instance of Tutor inherits the attributes
and operations of Person twice; these
situations are typically difficult to handle

January 23, 2003 © University of Colorado, 2003 39

Multiple Inheritance, continued
! In addition, a problem arises if a superclass is
specialized into multiple orthogonal
hierarchies;
! because with multiple inheritance while a class
can have multiple superclasses; an object must be
an instance of a single class

! so if I want an instance of a Person, who inherits
from the Child, Female, and Student classes, I
need to create a single class called
ChildFemaleStudent

! if the number of orthogonal hierarchies is large, an
explosion in the number of classes can result

January 23, 2003 © University of Colorado, 2003 40

Multiple Classificiation
! Multiple classification is a solution to this problem; it
simply states that objects are allowed to be instances
of more than one class;
! Unfortunately, not many object-oriented programming
languages support multiple classification

! Some languages provide the concept of an interface, which
partially addresses this problem without resorting to multiple
classification, except that with interfaces, no method
implementations can be shared among objects that
implement the same interface

January 23, 2003 © University of Colorado, 2003 41

Dynamic Classification
! Dynamic Classification allows an object
to switch classes during its life-time
! again, unfortunately, most object-oriented
programming languages do not support
dynamic classification

! This concept is useful in tracking
changes to a long-lived object
! For instance a Programmer object may
need to change into a Manager object

January 23, 2003 © University of Colorado, 2003 42

Abstract Class
! An abstract class is a parent class that cannot be directly
instantiated
! the reason for this is that all or some of its operations have
undefined methods

! An abstract class is often used to specify a contract that
subclasses must follow for a particular task
! When a subclass is defined, it provides method implementations for
each of the parent’s abstract methods that help it fulfill the contract

! For instance, a Shape object may define many abstract
methods that allow Shapes to be moved and manipulated; a
shape subclass cannot be instantiated until it provides methods
for each abstract method

January 23, 2003 © University of Colorado, 2003 43

What’s Next
! This lecture: fundamental object-
oriented concepts

! Next lecture: Introduction to Analysis
! After that

! Structured Analysis Techniques
! to show how they contrast with OO approaches

! Object-Oriented Analysis Techniques
! Use Cases

