
Lecture 3: Life Cycles and
Design Methods

Kenneth M. Anderson
Object-Oriented Analysis and Design
CSCI 6448 - Spring Semester, 2003

January 21, 2003 © University of Colorado, 2003 2

Goals for this Lecture
! Review traditional software engineering

life cycles
! Introduce the notion of an object-

oriented design method
! Hint: its another name for “life cycle”

January 21, 2003 © University of Colorado, 2003 3

Background
! In Software Engineering:

“Process is King”
! We want our activities to be coordinated and

planned, e.g. “engineered”
! The reason?

! A high quality process should increase our ability to
create a high quality product

January 21, 2003 © University of Colorado, 2003 4

Use of Process
! Car Assembly

! An assembly line is a process for producing cars.
! A significant amount of work goes into not just

designing a car but into designing the process
used to build that car

! Software Engineering
! The same principles can be applied to developing

a software system

January 21, 2003 © University of Colorado, 2003 5

Key Difference
! There is a key difference between software

engineering and car assembly, however.
! In car assembly, design time for the car is “short”, the

majority of the work lies in manufacturing
! In software engineering, we face the reverse situation,

creating new copies of a software system is trivial, it’s the
design that is hard

! Thus, there will be significant differences in the processes
used to develop software

January 21, 2003 © University of Colorado, 2003 6

Software Life Cycle

! A series of steps that organizes the
development of a software product

! Duration can be from days to years
! Consists of

! people (!)
! overall process
! intermediate products
! stages of the process

January 21, 2003 © University of Colorado, 2003 7

Phases of a Software Life Cycle

! Standard Phases
! Requirements Analysis & Specification
! Design
! Implementation and Integration
! Operation and Maintenance
! Change in Requirements
! Testing throughout!

! Phases promote manageability and provide
organization

January 21, 2003 © University of Colorado, 2003 8

Requirements Analysis and
Specification
! Problem Definition ! Requirements Specification

! determine exactly what client wants and identify constraints
! develop a contract with client
! Specify the product’s task explicitly

! Difficulties
! client asks for wrong product
! client is computer/software illiterate
! specifications may be ambiguous, inconsistent, incomplete

! Validation
! extensive reviews to check that requirements satisfy client needs
! look for ambiguity, consistency, incompleteness
! check for feasibility, testability
! develop system/acceptance test plan

January 21, 2003 © University of Colorado, 2003 9

Design
! Requirements Specification ! Design

! develop architectural design (system structure)
! decompose software into modules with module interfaces

! develop detailed design (module specifications)
! select algorithms and data structures

! maintain record of design decisions

! Difficulties
! miscommunication between module designers
! design may be inconsistent, incomplete, ambiguous

! Verification
! extensive design reviews (inspections) to determine that design conforms to

requirements
! check module interactions
! develop integration test plan

January 21, 2003 © University of Colorado, 2003 10

Implementation and Integration
! Design ! Implementation

! implement modules and verify they meet their specifications
! combine modules according to architectural design

! Difficulties
! module interaction errors
! order of integration has a critical influence on product quality

! Verification and Testing
! code reviews to determine that implementation conforms to requirements and design
! develop unit/module test plan: focus on individual module functionality
! develop integration test plan: focus on module interfaces
! develop system test plan: focus on requirements and determine whether product as a

whole functions correctly

January 21, 2003 © University of Colorado, 2003 11

Operation and Maintenance
! Operation ! Change

! maintain software after (and during) user operation
! determine whether product as a whole still functions correctly

! Difficulties
! design not extensible
! lack of up-to-date documentation
! personnel turnover

! Verification and Testing
! review to determine that change is made correctly and all documentation

updated
! test to determine that change is correctly implemented
! test to determine that no inadvertent changes were made to compromise

system functionality

January 21, 2003 © University of Colorado, 2003 12

Build First
Version

Retirement

Operations Mode

Modify until
Client is satisfied

Code-and-Fix (Not a Life Cycle!)

January 21, 2003 © University of Colorado, 2003 13

Discussion of Code-and-Fix
! Useful for “hacking”
! Problems become apparent in serious coding efforts

! No process for things like versioning, configuration
management, testing, etc.

! Difficult to coordinate activities of multiple programmers
! Non-technical users cannot explain how the program should

work
! Programmers do not know or understand user needs

January 21, 2003 © University of Colorado, 2003 14

Requirements

Verify

Retirement

Operations

Test

Implementation
Verify

Design

Req. Change

Waterfall Model

January 21, 2003 © University of Colorado, 2003 15

Discussion of Waterfall
! Proposed in early 70s
! Widely used (even today)
! Advantages

! Measurable Progress
! Experience applying steps in past projects can be used in

estimating duration of steps in future projects
! May produce software artifacts that can be reused in other

projects

January 21, 2003 © University of Colorado, 2003 16

Waterfall, continued
! The original waterfall model had disadvantages

because it disallowed iteration
! Inflexibility
! Monolithic
! Estimation is difficult
! Requirements change over time
! Maintenance not handled well

! These are problems with other life cycle models as well
! The “waterfall with feedback” model was created in response

! Our slides show this model

January 21, 2003 © University of Colorado, 2003 17

For each build:
Perform detailed
design, implement.
Test. Deliver.

Incremental
Requirements

Verify

Retirement

Operations

Verify

Arch. Design

January 21, 2003 © University of Colorado, 2003 18

Discussion of Incremental Model
! Used by Microsoft

! Programs are built everyday by the build manager
! If a programmer checks in code that “breaks the

build” they become the new build manager!
! Iterations are classified according to features

! e.g. features 1 and 2 are being worked on in this iteration,
features 3 and 4 are next

January 21, 2003 © University of Colorado, 2003 19

Summary
! Life cycles make software development

! predictable
! repeatable
! measurable
! efficient

! High-quality processes should lead to high-
quality products
! at least it improves the odds of producing good

software

January 21, 2003 © University of Colorado, 2003 20

Survey of OOA&D Methods
! Generalization

! Taken from “SE: A Practitioner’s approach, 4th ed.” by Roger S.
Pressman, McGraw-Hill, 1997

! The Booch Method
! The Jacobson Method
! The Rambaugh Method
! The Unified Software Process

January 21, 2003 © University of Colorado, 2003 21

OO Methods In general...
! Obtain customer requirements for the OO System

! Identify scenarios or use cases
! Build a requirements model

! Select classes and objects using basic requirements
! Identify attributes and operations for each object
! Define structures and hierarchies that organize classes
! Build an object-relationship model
! Build an object-behavior model
! Review the OO analysis model against use cases

! Once complete, move to design and implementation: These phases
simply elaborate the previously created models with more and
more detail, until it is possible to write code straight from the
models

January 21, 2003 © University of Colorado, 2003 22

Detailed comparisons
! What follows is a barebones description of

each method, detailed comparisons can be
found in:
! Graham, I. Object-Oriented Methods, Addison-

Wesley, Third Edition, 2001
! For related links:
! <http://www.ultranet.com/~lebrun/Steven/Computer/Programming/Object-Oriented.html>

January 21, 2003 © University of Colorado, 2003 23

Background on OO Methods
! An OO Method should cover and include

! requirements and business process modeling
! a lightweight, customizable process framework
! project management
! component architecture
! system specification

! use cases, UML, architecture, etc.
! component design and decomposition
! testing throughout the life cycle
! QA and configuration management
! Process Patterns

January 21, 2003 © University of Colorado, 2003 24

Process Patterns
! A pattern in the form of

! Whenever your goal is A
and your current situation is B
then try doing C

! (but be aware of prerequisite P, risk R, side-
effect S, time-scale T, etc.)

January 21, 2003 © University of Colorado, 2003 25

The Booch Method
! Identify classes and objects

! Propose candidate objects
! Conduct behavior analysis
! Identify relevant scenarios
! Define attributes and operations for each class

! Identify the semantics of classes and objects
! Select scenarios and analyze
! Assign responsibility to achieve desired behavior
! Partition responsibilities to balance behavior
! Select an object and enumerate its roles and responsibilities
! Define operations to satisfy the responsibilities

January 21, 2003 © University of Colorado, 2003 26

Booch, continued
! Identify relationships among classes and objects

! Define dependencies that exist between objects
! Describe the role of each participating object
! Validate by walking through scenarios

! Conduct a series of refinements
! Produce appropriate diagrams for the work conducted above
! Define class hierarchies as appropriate
! Perform clustering based on class commonality

! Implement classes and objects
! In analysis and design, this means specify everything!

January 21, 2003 © University of Colorado, 2003 27

The Jacobson Method
! Object-Oriented Software Engineering

! Primarily distinguished by the use-case
! Simplified model of Objectory

! Objectory evolved into the Rational Unified Software
Development Process

! For more information on this Objectory precursor,
see

! Jacobson, I., Object-Oriented Software Engineering,
Addison-Wesley, 1992.

January 21, 2003 © University of Colorado, 2003 28

Jacobson, continued
! Identify the users of the system and their overall

responsibilities
! Build a requirements model

! Define the actors and their responsibilities
! Identify use cases for each actor
! Prepare initial view of system objects and relationships
! Review model using use cases as scenarios to determine

validity
! Continued on next slide

January 21, 2003 © University of Colorado, 2003 29

Jacobson, continued
! Build analysis model

! Identify interface objects using actor-interaction information
! Create structural views of interface objects
! Represent object behavior
! Isolate subsystems and models for each
! Review the model using use cases as scenarios to

determine validity

January 21, 2003 © University of Colorado, 2003 30

The Rambaugh Method
! Object Modeling Technique (OMT)

! Rambaugh, J. et al., Object-Oriented Modeling and Design,
Prentice-Hall, 1991

! Analysis activity creates three models
! Object model

! Objects, classes, hierarchies, and relationships

! Dynamic model
! object and system behavior

! Functional model
! High-level Data-Flow Diagram

January 21, 2003 © University of Colorado, 2003 31

Rambaugh, continued
! Develop a statement of scope for the problem
! Build an object model

! Identify classes that are relevant for the problem
! Define attributes and associations
! Define object links
! Organize object classes using inheritance

! Develop a dynamic model
! Prepare scenarios
! Define events and develop an event trace for each scenario
! Construct an event flow diagram and a state diagram
! Review behavior for consistency and completeness

January 21, 2003 © University of Colorado, 2003 32

Rambaugh, continued
! Construct a functional model for the system

! Identify inputs and outputs
! Use data flow diagrams to represent flow transformations
! Develop a processing specification for each process in the

DFD
! Specify constraints and optimization criteria

! Iterate!

January 21, 2003 © University of Colorado, 2003 33

Rational Unified Process:
Overview

Transition

Taken from
UML Distilled,
Chapter 2

Construction

1 2 3
ElaborationInception

See also, page 482-
485 of Graham’s
OO Methods book

January 21, 2003 © University of Colorado, 2003 34

Inception
! High-level planning for the project
! Determine the project’s scope
! If necessary

! Determine business case for the project
! Estimate cost and projected revenue

January 21, 2003 © University of Colorado, 2003 35

Elaboration
! Develop requirements and initial design
! Develop Plan for Construction phase
! Risk-driven approach

! Requirements Risks
! Technological Risks
! Skills Risks
! Political Risks

January 21, 2003 © University of Colorado, 2003 36

Requirements Risks
! Is the project technically feasible?
! Is the budget sufficient?
! Is the timeline sufficient?
! Has the user really specified the desired

system?
! Do the developers understand the

domain well enough?

January 21, 2003 © University of Colorado, 2003 37

Dealing with Requirements Risks

! Construct models to record Domain
and/or Design knowledge
! Domain model (vocabulary)
! Use Cases
! Design model

! Class diagrams
! Activity diagrams

! Prototype construction

January 21, 2003 © University of Colorado, 2003 38

Dealing with Requirements Risks
! Begin by learning about the domain

! Record and define jargon
! Talk with domain experts

! Oftentimes end-users!
! Next construct Use cases

! What are the required external functions of
the system?

! Iterative process; Use Cases can be added
as they are discovered

January 21, 2003 © University of Colorado, 2003 39

Dealing with Requirements Risks

! Finally, construct Design model
! Class diagrams identify key domain concepts and

their high-level relationships
! Activity diagrams highlight the domain’s work

practices
! A major task here is identifying parallelism that can be

exploited later

! Be sure to consolidate iterations into a final
consistent model

January 21, 2003 © University of Colorado, 2003 40

Dealing with Requirements Risks
! Build prototypes

! Used only to help understand requirements
! Throw them all out!

! Do not be tied to an implementation too early
! Make use of rapid prototyping tools

! 4th Generation Programming Languages
! Scripting and/or Interpreted environments
! UI Builders

! Be prepared to educate the client as to the purpose
of the prototype

January 21, 2003 © University of Colorado, 2003 41

Technology Risks
! Are you tied to a particular technology?
! Do you “own” that technology?
! Do you understand how different

technologies interact?
! Techniques

! Prototypes!
! Class diagrams, package diagrams
! “Scouting” — evaluate technology early

January 21, 2003 © University of Colorado, 2003 42

Skill Risks
! Do the members of the project team

have the necessary skills and
background to tackle the project?

! If not
! Training, Consulting, Mentoring and Hiring

new people are available options!

January 21, 2003 © University of Colorado, 2003 43

Political Risks
! How well does the proposed project

mesh with corporate culture?
! Consider the attempt to use Lotus Notes at

Arthur Anderson
! Lotus Notes attempts to promote collaboration
! Arthur Anderson consultants compete with

each other!
! Consider e-mail: any employee can ignore

the org chart and mail the CEO!

January 21, 2003 © University of Colorado, 2003 44

Political Risks, continued
! Will the project directly compete with

another business unit?
! Will it be at odds with some higher level

manager’s business plan?

! Any of these can kill a project…
! Examples from students?

January 21, 2003 © University of Colorado, 2003 45

Reference
! Lotus Notes vs. Arthur Anderson

! Orlikowski, W. J. (1992). "Learning from
Notes: Organizational Issues in Groupware
Implementation". Proceedings of ACM
CSCW'92 Conference on Computer-
Supported Cooperative Work: 362-369.

! If you are interested you can borrow my
copy of the CSCW’92 proceedings to
make a copy

January 21, 2003 © University of Colorado, 2003 46

Ending Elaboration
! Baseline architecture constructed

! List of Use cases (with estimates)
! Domain Model
! Technology Platform

! AND
! Risks identified
! Plan constructed

! Use cases assigned to iterations

January 21, 2003 © University of Colorado, 2003 47

Construction
! Each iteration produces a software product that

implements the assigned Use cases
! Additional analysis and design may be necessary as the

implementation details get addressed for the first time

! Extensive testing should be performed and the
product should be released to (some subset of) the
client for early feedback

January 21, 2003 © University of Colorado, 2003 48

Transition
! Final phase before release 1.0
! Optimizations can now be performed

! Optimizing too early may result in the
wrong part of the system being optimized

! Largest boosts in performance come from
replacing non-scalable algorithms or
mitigating bottlenecks

