
Lecture 20: Intro. to Design (Part 3)

Kenneth M. Anderson
Object-Oriented Analysis and Design
CSCI 6448 - Spring Semester, 2002

March 21, 2002 © Kenneth M. Anderson, 2002 2

Credit where Credit is Due

• Some material presented in this lecture is
taken from section 6 of Maciaszek’s
“Requirements Analysis and System
Design”. © Addison Wesley, 2000

March 21, 2002 © Kenneth M. Anderson, 2002 3

Goals for this Lecture

• Cover the tutorial presented in Section�6.3
of the textbook
– Discuss

• Package Design
• Component Design
• Deployment Design
• Collaboration Design

March 21, 2002 © Kenneth M. Anderson, 2002 4

Last Lecture

• Covered
– Detailed Design

• Collaborations
• Collaboration Diagrams
• Extend analysis models to contain technical details

– For each collaboration, define
» Structural part (subset of class diagram)
» Behavioral part (collaboration diagram)

• Collaborations realize use cases and operations



March 21, 2002 © Kenneth M. Anderson, 2002 5

Tutorial in Design Modeling

• Purpose: to continue developing the
analysis models created in Section 2.2
– adding technical detail to transform these
models into a software design

• Demonstrate concepts introduced in chapter
6
– The tutorial will cover architectural issues and
detailed design issues

March 21, 2002 © Kenneth M. Anderson, 2002 6

Step 1: Package Design

• Packages can be used to cluster related models
together
– In analysis: cluster related use cases
– In design: cluster related classes

• As such, Maciaszek distinguishes between
– Use case packages and Class packages

• Packages are typically used in large system design
– small systems often can be understood without
packages, since use cases provide a sufficient
breakdown of concepts in such situations

March 21, 2002 © Kenneth M. Anderson, 2002 7

Package Design, continued

• Class packages evolve during design as
boundary, control, and database classes are
identified
– Entity classes were already identified during
analysis

• Use case packages while helpful in early
design stages are eventually replaced by the
class package model

March 21, 2002 © Kenneth M. Anderson, 2002 8

Package Design Example

• We return to the example of the system that allows
the ordering of computer configurations via a web
site
– To start package design, we develop a use case package
model that groups the use cases identified in figure 2.24
on page 52
• The resulting model is shown on page 223

• Note: this model accomodates future use cases; as
we develop additional use cases, this package
structure provides a way to categorize them



March 21, 2002 © Kenneth M. Anderson, 2002 9

Package Design, continued
• Next, we develop an initial class package model

– Maciaszek suggests “impersonating the system” and imagine what needs
to be done to accept a customer’s order for a configured computer

• Figure 6.25 on page 225 shows the resulting package structure
– The “customers”, “computers”, and “orders” packages come from the

classes identified on page 59; all other packages were derived from the
process above

• Note: Maciaszek asserts that package dependencies are non-transistive;
but I don’t belive it!
– Taking his example of changes to customer not percolating to the GUI

classes, what if we add a new attribute to our customer class? We will
need a change in the GUI to ask for this piece of information

March 21, 2002 © Kenneth M. Anderson, 2002 10

Step 2: Component Design

• Components are physical parts of the
system; they cannot be separated from the
implementation platform
– Our example is a web application that will
require at least a web server and a database
server

– On page 226, Maciaszek discusses common
components of a web application, including
scripts, cookies, applets, ODBC or JDBC, etc.

March 21, 2002 © Kenneth M. Anderson, 2002 11

Component Design, continued

• Similar to the “impersonate a system”
technique, Maciaszek develops an initial
component design by steping through the
process of ordering a computer and looking
for “cohesive functional units”
– On page 228, the diagram contains components
for listing and displaying products, configuring
a computer, making a purchase and tracking an
order

March 21, 2002 © Kenneth M. Anderson, 2002 12

Step 3: Deployment Design

• Once components have been designed, we must
determine how they will be deployed
– This is highly context dependent
– Maciaszek does only a cursory job of covering this
topic in section 6.3.3
• His deployment diagram is underwhelming to say the least!
(page 230)

• Issues to be determined include, what types of
nodes are present in the system and how the
components map to them
– In addition, issues such as security, load balancing,
backups, etc.



March 21, 2002 © Kenneth M. Anderson, 2002 13

Step 4: Collaboration Design

• As discussed in the previous lecture,
collaborations help to realize use cases and
operations
– here we are performing detailed design
– the previous three steps were addressing architectural
design

• The first step is to elaborate use cases; after
analysis use cases are unlikely to contain enough
information to design collaborations

March 21, 2002 © Kenneth M. Anderson, 2002 14

Collaboration Design, continued

• To prepare for this step, Maciaszek
recommends the use of a case tool for
storing use case documents
– in particular, being able to use a case tool’s
ability to number and renumber requirements is
extremely useful

• Our purpose is to add information to the use
case that include system-level demands
while still maintaining an actor perspective

March 21, 2002 © Kenneth M. Anderson, 2002 15

Use Case Elaboration

• As an example, we return to the use case “Order
Configured Computer” shown on page 53 and extend it to
the use case displayed on pages 233-236

• Comments
– Some aspects of ui design are present
– Many details defered in analysis, such as the contents of an order

form, make their appearance
– Maciaszek’s use case violates Cockburn’s “Do not ‘check

whether’” guideline! :-)
– The elaborated use case reads more like a traditional

requirements/design document

March 21, 2002 © Kenneth M. Anderson, 2002 16

Elaborate all Use Cases

• Note: we must elaborate all use cases in the
same manner
– The idea being that with the elaborated use
cases we have a better chance at identifiying
collaborations that will help realize the use case

• Once we have elaborated the use cases and
identified collaborations, we can move to
designing the structural and behavioural
part of each collaboration



March 21, 2002 © Kenneth M. Anderson, 2002 17

Structural Design of
Collaborations

• Figure 6.30 shows the structural part of a collaboration that
will realize the “Order Configured Computer”
– Note, it borrows two classes from the “Build Computer

Configuration” use case which is not shown in the text book
• Comments on class diagram

– Each class is categorized into boundary, control,entity, and
database packages using a prefix notation, e.g. e_Configuration

– Instantiation relationships are shown that show which objects will
cause other classes to be instantiated, e.g. which objects create
other objects

– Special stereotypes are used to indicate special types of objects that
are specific to the web application domain

March 21, 2002 © Kenneth M. Anderson, 2002 18

Behavioral Design of
Collaborations

• We now combine the information contain in the elaborated use case
with the structural part of the collaboration to create the behavioral
model of the collaboration
– On page 239 is a collaboration diagram that does this for the “Order

Configured Computer” use case
• again I think it is unfortunate that Maciaszek does not number the messages in

his collaboration diagram

• In practice, these models are only going to be created with iteration;
indeed, I would recommend starting with sequence diagrams and
elaborating them to include design details
– once the sequence diagram is finalized, you can then create a collaboration

diagram to make sure that all associations between classes have been
specified

March 21, 2002 © Kenneth M. Anderson, 2002 19

In summary

• Design consists of
– architectural design

• package design
• component design
• deployment design

– detailed design
• use case elaboration
• collaboration design

– structural and behavioral

March 21, 2002 © Kenneth M. Anderson, 2002 20

In summary, continued
• Design, like analysis, will be highly iterative

– At first, we will create partial architectural designs
• indeed we may skip this part at first to focus on use case elaboration

– Then we will start on use case elaboration
• before elaborating all use cases, we may then start on collaboration design

• We then continue to iterate, elaborating use cases, designing their
collaborations, mapping classes to packages, packages to components,
and components to node

• Once we are done, we are ready to move on to implementation; there
we can organize our implementation efforts around use cases,
implementing their associated collaborations until the entire system is
implemented


