
Lecture 14: Advanced Analysis (Part 2)

Kenneth M. Anderson
Object-Oriented Analysis and Design
CSCI 6448 - Spring Semester, 2002

February 28, 2002 © Kenneth M. Anderson, 2002 2

Credit where Credit is Due

• Some material presented in this lecture is
taken from section 5 of Maciaszek’s
“Requirements Analysis and System
Design”. © Addison Wesley, 2000

February 28, 2002 © Kenneth M. Anderson, 2002 3

Goals for this Lecture

• Continue to cover the material presented in
Section�5 of the textbook
– Introduce

• Advanced Generalization and Inheritance
• Advanced Aggregation and Delegation

February 28, 2002 © Kenneth M. Anderson, 2002 4

Advanced Generalization and Inheritance

• Generalization and Inheritance are related but not
the same
– Generalization is a semantic relationship between
classes
• It states that the interface of the subclass must include all
(public and protected) properties of the superclass

– Inheritance is the mechanism by which more specific
elements incorporate structure and behavior defined by
more general elements
• (more on this later)



February 28, 2002 © Kenneth M. Anderson, 2002 5

Generalization and Substitutability

• Semantically, generalization
– introduces new classes into a model
– categorizes them into generic and more specific classes
– and establishes superclass-subclass relationships

• The benefits of generalization arise from the
substitutability principle
– a subclass object can be used in place of a superclass object in any

part of the code where the superclass object is accessed
– This allows for instance aggregation and associations to be defined

on a superclass yet apply to its subclasses
• Unfortunately, inheritance can defeat substitutability

benefits
February 28, 2002 © Kenneth M. Anderson, 2002 6

Encapsulation vs. Inheritance

• Encapsulation demands that an object’s attributes
are only accessible through the operations in an
object’s interface
– If enforced, encapsulation leads to a high level of data
independence; data structures can change within a class
and not impact other classes (in general, non-functional
changes can invalidate this statement)

• Inheritance, unfortunately, compromises
encapsulation, since subclasses can directly access
protected attributes without using operations

February 28, 2002 © Kenneth M. Anderson, 2002 7

Interface Inheritance

• One type of inheritance involves just the interface of a
class; used to support substitutability
– A subclass inherits attribute types and operation signatures from its

superclass or from an explicitly defined interface class (such as the
interface mechanism in Java)
• A subclass is said to “support” or “implement” the interface; the
subclass does not inherit the implementations of the operations from a
superclass

– Abstract classes are similar to interfaces, except that an abstract
class can define implementations for some operations that are
inherited by its subclasses

February 28, 2002 © Kenneth M. Anderson, 2002 8

More on Interfaces

• An interface is a collection of operations
(not data) that specifies a particular service
of a class or a component
– For instance, lists, queues, stacks, and trees
typically provide an Iterator interface that
allows other classes to cycle through their
elements



February 28, 2002 © Kenneth M. Anderson, 2002 9

UML Notation

• The most simple notation for an interface is
a labeled circle

Iterator

Interface names can be grouped using
packages

Java::Collection::Iterator

February 28, 2002 © Kenneth M. Anderson, 2002 10

UML Notation

• However, a full class diagram can be used
to specify the particular operations
associated with an interface

«interface»
Iterator

init()
next()
more()

No attributes allowed!

February 28, 2002 © Kenneth M. Anderson, 2002 11

How interfaces are used

• You cannot instantiate an instance of an interface,
instead other classes (and thus their objects)
choose to implement certain interfaces
– An interface can act as a type, so you can declare
variables that have, for instance, the Iterator type

– This allows you to point at a class who implements the
Iterator interface without knowing (or caring) about
what its actual type is

February 28, 2002 © Kenneth M. Anderson, 2002 12

UML Notation

• To indicate that a class implements a
particular interface, use the “lollipop”
notation

• This is also called “realization”

Stack

The lollipop

Iterator



February 28, 2002 © Kenneth M. Anderson, 2002 13

UML Notation, continued

• When drawing an interface using a class
diagram, realization is shown using the
following notation

«interface»
Iterator

init()
next()
more()

Stack

The fact that
realization has
two notations
is, in my opinion,
unfortunate.

February 28, 2002 © Kenneth M. Anderson, 2002 14

Implementation Inheritance

• Generalization can be used to imply
substitutability which can be realized by
interface inheritance
– Generalization can also be used to imply code
reuse (the default) which is realized by
implementation inheritance

– Maciaszek points out that this is a
(dangerously) powerful interpretation of
generalization; lets see why

February 28, 2002 © Kenneth M. Anderson, 2002 15

Implementation Inheritance

• Implementation inheritance allows
subclasses to override the implementation
of operations provided by a superclass
– It can support both

• calling the superclass implementation and extending
it (good)

• replacing the superclass implementation entirely
(bad, why? hint: substitutability)

February 28, 2002 © Kenneth M. Anderson, 2002 16

Extension Inheritance

• UML advocates the use of extension inheritance
– A subclass has more properties (attributes and/or
methods) than its superclass

– The overriding of properties should be used with care
• A subclass can only be allowed to make a property more
specific (e.g. to constrain values or to make methods more
efficient) not to change the meaning of a property
– because if the meaning is changed, then substitutability is lost



February 28, 2002 © Kenneth M. Anderson, 2002 17

Restriction Inheritance

• Restriction inheritance occurs when inherited
properties are suppressed by subclasses (“pay no
attention to the man behind the curtain”)
– See examples on page 182

• This runs counter to the notion of generalization
and requires developers to realize that certain
properties in the subclass must be ignored (even
though they are present) which can lead to
maintenance problems

February 28, 2002 © Kenneth M. Anderson, 2002 18

Convenience Inheritance

• Inheritance that neither extends or restricts
is “bad news”
– Such inheritance can occur when two or more
classes have similar implementations but no
semantic (or taxonomic) relationships
conceptually
• For instance, a line segment is not a point but it can
reuse some of the features of point (but only after
extensive overriding of its operations)

• See page 183

February 28, 2002 © Kenneth M. Anderson, 2002 19

Problems of Implementation Inheritance

• Fragile Base class
– allowing the implementation of a superclass to
evolve after subclasses have been defined
• changing the signature of a method
• splitting a single method into one or more methods
• joining multiple methods into a single method

February 28, 2002 © Kenneth M. Anderson, 2002 20

Problems of Implementation Inheritance

• Overriding and Callbacks
– Five types of overriding

• reuse inherited method without change
• call inherited method within own method (extension)
• ignore inherited method (override)
• inherited method is empty; supply own implementation
• inherit interface only (interface inheritance)

– These mechanisms set-up a web of calls that can occur
between classes; a message passed to one object might
be sent up or down the inheritance hierarchy in
complex ways; see page 185



February 28, 2002 © Kenneth M. Anderson, 2002 21

Problems of Implementation Inheritance

• Multiple Implementation Inheritance
– Only a problem with languages that support
multiple inheritance

– multiple interface inheritance causes problems
since multiple interface contracts must be
merged into a single object

– multiple implementation inheritance causes
problems when multiple implementation
fragments are merged into a single object

February 28, 2002 © Kenneth M. Anderson, 2002 22

Advanced Aggregation and Delegation

• Maciaszek begins section 5.4 by
reintroducing his variations to aggregation
– ExclusiveOwns
– Owns
– Has
– Member

• I will not repeat this material

February 28, 2002 © Kenneth M. Anderson, 2002 23

Aggregation and Generalization

• More interesting is section 5.4.2
– Aggregation as alternative to generalization

• Generalization is superclass-subclass
• Aggregation is superset-subset

– but generalization can be represented as an aggregation, see
page 190

– Main distinction is that
• generalization is predicated on the notion of class

– inheritance implements semantics
• while aggregation is centered on the notion of objects

– delegation implements semantics

February 28, 2002 © Kenneth M. Anderson, 2002 24

Delegation

• Whenever a composite object cannot handle a task by
itself, it delegates the responsibility of completing the task
to one of its component objects

• Delegation versus Inheritance
– Delegation can be used to model inheritance and vice versa
– In delegation, outer objects reuse the methods of inner objects; the

difference is who retains control
• a message sent to a subclass can be passed to the superclass via
inheritance, but control returns to the superclass; in delegation control
stays with the inner object

– Delegation has one advantage over inheritance in that sharing and
reuse can be done at run-time; reuse in inheritance is specified
statically and cannot change


