
Lecture 11: Requirements Specification

Kenneth M. Anderson
Object-Oriented Analysis and Design
CSCI 6448 - Spring Semester, 2002

February 19, 2002 © Kenneth M. Anderson, 2002 2

Credit where Credit is Due

• Some material presented in this lecture is
taken from section 4 of Maciaszek’s
“Requirements Analysis and System
Design”. © Addison Wesley, 2000

February 19, 2002 © Kenneth M. Anderson, 2002 3

Goals for this Lecture

• Cover the material presented in Section�4 of
the textbook
– Introduce Requirements Specification
– Provides more insight into OO Analysis

• This chapter provides many examples

February 19, 2002 © Kenneth M. Anderson, 2002 4

Requirements Specification

• Produces three types of models
– State Models

• Use Cases (some actors become classes)
• Class Diagrams

– Behavior Models
• Activity Diagrams
• Interaction Diagrams

– State Change Models
• State Chart Diagrams



February 19, 2002 © Kenneth M. Anderson, 2002 5

Requirements Specification

• Models are developed iteratively
– Taking into account use cases and constraints
(developed during requirements elicitation)

• Each model, or diagram, represents a view into the
system; the models, taken together, allow
developers and customers to view the system from
multiple perspectives

• We now examine each type of model in more
detail

February 19, 2002 © Kenneth M. Anderson, 2002 6

State specifications

• The state of an object is determined by the
values of its attributes and associations
– A BankAccount may be “overdrawn” when its
balance is negative

• Since object states are determined from data
structures, the models of the data structures
(e.g. classes) are called state specifications

February 19, 2002 © Kenneth M. Anderson, 2002 7

State Specifications

• State specifications provide a static view of the
system
– The attributes and associations of classes do not change
dynamically
• in typical OO languages, some OO languages, however do
allow the operations and attributes of classes to vary
dynamically at run-time

• The main task is to specify the classes of an
application domain
– only attributes and associations; operations are derived
from the behavior specification

February 19, 2002 © Kenneth M. Anderson, 2002 8

State Specification

• Define entity classes
– Persistent classes in the app. domain

• aka business objects

• How to do this? The process is highly dependent
on the analyst’s
– knowledge of class modeling
– understanding of the application domain
– experience with similar and successful designs
– ability to think forward and predict consequences
– willingness to revise the model iteratively



February 19, 2002 © Kenneth M. Anderson, 2002 9

Discovering Classes

• Four Approaches
– Noun Phrase Approach
– Common Class Patterns
– Use Case Driven (already covered)
– CRC (Class-Responsibility-Collaboration)

February 19, 2002 © Kenneth M. Anderson, 2002 10

Noun Phrase Approach

• Examine the requirements and underline each noun
– Each noun is a candidate class

• Divide list of candidate classes into
– Relevant Classes

• Part of the application domain; occur frequently in reqs.
– Irrelevant Classes

• Outside of application domain
– Fuzzy Classes

• Unable to be declared relevant with confidence; require additional
analysis

• Experience will eventually enable designers to avoid
generating irrelevant classes

February 19, 2002 © Kenneth M. Anderson, 2002 11

Common Class Patterns

• Derive classes from the generic classification
theory of objects
– Concept class - a notion shared by a large community
– Events class - captures an event that demarks intervals
within a system

– Organization class - a collection or group within the
domain

– People class - roles people can play
– Places class - a physical location relevant to the system

February 19, 2002 © Kenneth M. Anderson, 2002 12

Common Class Patterns

• Rumbaugh proposes a different scheme
– Physical Class (Airplane)
– Business Class (Reservation)
– Logical Class (FlightTimeTable)
– Application Class (ReservationTransaction)
– Computer Class (Index)
– Behavioral Class (ReservationCancellation)

• These taxonomies are meant to help a designer
think of classes, however it is difficult to be
systematic



February 19, 2002 © Kenneth M. Anderson, 2002 13

CRC Cards

• CRC Cards stands for
– Class-Responsibility-Collaboration Cards

• Meant primarily as a brainstorming tool for
analysis and design
– Rather than use diagrams, use index cards
– Rather than record attributes and methods,
record responsibilities

February 19, 2002 © Kenneth M. Anderson, 2002 14

Why index cards?
• Forces you to be concise and clear

– and focus on major responsibilities
– since you must fit everything onto one index card

• Inherent Advantages
– cheap, portable, readily available, and familiar

• Affords Spatial Semantics…
– Close collaborators can be overlapped
– Vertical dimension can be assigned meanings
– Abstract classes and specializations can form piles

• …which provides benefits
– Beck and Cunningham report that they have seen designers talk about a

new card by pointing at where it will be placed

February 19, 2002 © Kenneth M. Anderson, 2002 15

Example CRC Card

Name

Responsibility 1
Responsibility 2
…
Responsibility N

Collaboration 1
Collaboration 2
…
Collaboration M

Note: Collaborations are indicated by listing the names
of other classes; Responsibilities are typically denoted
as short English sentences February 19, 2002 © Kenneth M. Anderson, 2002 16

Example

Model
View Controller

Render the Model
Transform Coordinates Controller

Interpret User Input
Distribute Control

View
Model

Model

Maintain Problem-Related Info
Broadcast Change Notification



February 19, 2002 © Kenneth M. Anderson, 2002 17

Maciaszek’s Guidelines

• Each class must have a statement of purpose in the system
• Each class is a template for a set of objects

– avoid singleton classes

• Each class must house a set of attributes
• Each class should be distinguished from an attribute

– e.g. Color may be an attribute of a Car class, but may be needed as
a full class in a paint program

• Each class houses a set of operations that represents the
interface of the class
– operations can be derived from the statement of purpose

February 19, 2002 © Kenneth M. Anderson, 2002 18

Examples in Textbook

• Pages 112-133 work through four examples
of class specification in detail
– class discovery
– then specifying

• attributes
• associations
• aggregations/compositions
• inheritance

February 19, 2002 © Kenneth M. Anderson, 2002 19

Specifying Attributes

• Attributes are specified in parallel with
classes
– initial set of attributes will be “obvious”
– important to initially select attributes that help
to determine the states of the class
• additional attributes can be added in subsequent
iterations

February 19, 2002 © Kenneth M. Anderson, 2002 20

Specifying Associations

• Associations connect objects in the system
– they facilitate collaboration between objects

• Specifying associations involves
– naming them
– naming the roles

• especially useful in self associations
• note, a role name becomes an attribute in the class
on the opposite end of the association

– determining multiplicity



February 19, 2002 © Kenneth M. Anderson, 2002 21

Specifying Aggregation/Composition

• “whole-part” relationships between composite and
component classes
– UML models aggregation as a constrained form of
association

• Maciaszek suggests additional power
– ExclusiveOwns and Owns
– Has and Member

• Litmus test: “has” or “is-part-of” is needed to
explain relationship

February 19, 2002 © Kenneth M. Anderson, 2002 22

Specifying Generalizations

• Looking for common features among classes
– Move common features up a class hierarchy and
specialized features down

• Apart from inheritance, generalization has two
objectives
– substitutability and polymorphism

• Litmus test: “can be” and “is-a-kind-of” required
to explain relationship

February 19, 2002 © Kenneth M. Anderson, 2002 23

Behavior Specifications

• Behavior of a system, as it appears to an outside
user, is specified in use cases
– During analysis, use cases specify “what” a system
needs to do (not “how”)

• Use cases require computations to be performed
• Computations are divided into activities

– and can be modeled using activity diagrams;
• Activities are carried out by interacting objects;

– interactions are modeled using sequence diagrams

February 19, 2002 © Kenneth M. Anderson, 2002 24

More on Use Cases

• A use case represents
– a complete piece of functionality
– a piece of externally visible functionality
– an orthogonal piece of functionality

• use cases can share objects but execute independently from
each other

– a piece of functionality initiated by an actor
– a piece of functionality that delivers value to an actor



February 19, 2002 © Kenneth M. Anderson, 2002 25

Finding Use Cases

• Use cases are discovered via analysis of
– requirements in the reqs. doc
– actors and their purpose

• Jacobson suggests asking the following questions
concerning actors to help identify use cases
– What are the main tasks performed by the actor
– Will an actor access or modify information in the system
– Will an actor inform the system about changes in other systems?
– Should an actor be informed about unexpected changes in the

system?

February 19, 2002 © Kenneth M. Anderson, 2002 26

Use Case Relationships

• Association
– a communication path

• Generalization
– a specialized use case can change any aspect of the base
use case

• include
– directly includes steps of another use case

• extend
– customize an extension point

• See examples on pages 137-140

February 19, 2002 © Kenneth M. Anderson, 2002 27

Modeling Activities

• Activities capture the flow of logic within a
system
– both sequential and parallel control can be modeled

• Since activities do not reference classes, they can
be created without the need for a class diagram

• Most often used to graphically represent the steps
of a use case
– can show main flow and extensions at once

• See example on page 142

February 19, 2002 © Kenneth M. Anderson, 2002 28

Modeling Interactions

• One level of abstraction below activities
• Interaction models require at least one iteration of state

specification to be performed
– Since we need to have classes to which each object belongs

• Interaction diagrams do not model object state changes;
however they may show the actions that lead to an object
state change

• Interactions can help determine operations; any message to
an object in a interaction must be serviced by an operation



February 19, 2002 © Kenneth M. Anderson, 2002 29

Discovering Message Sequences

• The sequence of messages in an interaction
is determined by its associated activity
– The event that starts the activity is the first
message in the interaction

– The event that ends the activity is the last
message in the interaction

– We need to figure out what occurs in between;
typically straightforward

February 19, 2002 © Kenneth M. Anderson, 2002 30

Specifying message sequences

• Useful to distinguish between
– signals

• asynchronous inter-object communication
• often shown with “half-arrow notation”

– calls
• synchronous inter-object communication
• control returns to caller (usually)

• See example on page 145

February 19, 2002 © Kenneth M. Anderson, 2002 31

Defining Operations

• A public interface of a class consists of operations
that offer services to entities external to the class
– operations are best discovered from sequence diagrams,
since every message must be serviced by an operation

• Other operations can be found using the CRUD
(create, read, update, delete) paradigm; classes
need to provide these services regardless of their
domain-specific functionality

February 19, 2002 © Kenneth M. Anderson, 2002 32

State Change Specifications

• Defines how an object changes state over
time in response to particular events
– States are discovered by analyzing the values of
attributes and determining which have special
interest to use cases
• Having or not having a phone number is a state for a
customer; the specific value of the phone number is
irrelevant to the state

– See example on page 150


