
Lecture 5: Introduction to
Analysis

Kenneth M. Anderson
Object-Oriented Analysis and Design
CSCI 6448 - Spring Semester, 2002

January 29, 2002 © Kenneth M. Anderson, 2002 2

Goals for this Lecture

• Introduce the concept of analysis
– Discuss requirements
– Discuss requirements engineering
– Discuss requirements analysis
– Discuss requirements/design gap
– Discuss the problem context of software

engineering
– Discuss domains

January 29, 2002 © Kenneth M. Anderson, 2002 3

IEEE definition of requirement

1. A condition or capacity needed by a user to solve a
problem or achieve an objective

2. A condition or capability that must be met or possessed
by a system or system component to satisfy a contract,
standard, specification or other formally imposed
documents

3. A documented representation of a condition or capability
as in 1 or 2

January 29, 2002 © Kenneth M. Anderson, 2002 4

Requirements Engineering

“The systematic process of developing
requirements through an iterative cooperative
process of analyzing the problem,
documenting the resulting observations in a
variety of representation formats, and
checking the accuracy of the understanding
gained.”

– K. Pohl, 1993

January 29, 2002 © Kenneth M. Anderson, 2002 5

Questions to consider

• Can one be systematic in the face of vaguely
understood requirements?

• Can one know whether the requirements are
complete in the context of iteration?

• How do you define cooperation among agents?
• What representation formalisms can be used?
• How can a genuine shared understanding be

reached?

January 29, 2002 © Kenneth M. Anderson, 2002 6

Two sides to Requirements
Engineering

• Requirements Elicitation
– The process whereby a development agency discovers

what is needed and why
– Uses knowledge elicitation techniques

• ethnomethodology, human factors, ergonomics, etc.

• Requirements Analysis
– The process of understanding the requirements
– Asks questions about completeness and consistency
– Uses formal methods of systems analysis

January 29, 2002 © Kenneth M. Anderson, 2002 7

Requirements Analysis

• Understanding the phenomena of the application domain
• Describing the required relationships among the

phenomena
• Example: Elevator Controller

– Phenomena concern the application domain, not the (software)
machine that controls it

• buttons being pressed, buttons lighting up, cars moving in directions,
doors opening and closing, people entering and leaving

January 29, 2002 © Kenneth M. Anderson, 2002 8

Design

• Creating a machine that satisfies the requirements
– Machine ensures satisfaction by sharing phenomena with

application domain
• shared events occur in both domains
• shared states visible in both domains

• Example: Elevator Controller
– “Press up button on floor 3” ≈ “Signal on line 3U”
– “Car at floor 3” ≈ “Floor_Sensor_State[3] = 1”

January 29, 2002 © Kenneth M. Anderson, 2002 9

Application versus Machine Phenomena

• Not all phenomena are shared
• Creates requirements/design gap
• Example: Elevator Controller

– Car movement while between sensors
– Correspondence of person pushing button to person exiting

Application Domain Machine

A MA ∩M

January 29, 2002 © Kenneth M. Anderson, 2002 10

Does System Satisfy
Requirements?

1. If computer behaves as P, then S satisfied
– C,P a S, where C are the properties of the computer

2. If S satisfied, then R must be satisfied
– D,S a R, where D are the properties of the

application domain

R(equirements) ⇒ A

P(rogram) ⇒ M

S(pec.) ⇒ A ∩ M Application Domain Machine

A MA ∩M

January 29, 2002 © Kenneth M. Anderson, 2002 11
Application Domain Machine

A MA ∩M

Understanding Domain is Critical

• Example: Automated Thrust Reverser
– Requirement

• reverse_enabled IFF moving_on_runway
– Domain Properties Assumed by Developers

• wheel_pulses_on IFF wheels_turning
• wheels_turning IFF moving_on_runway

wheel_pulses_onmoving_on_runway
wheels_turning reverse_enabled

January 29, 2002 © Kenneth M. Anderson, 2002 12

Domain Misunderstandings �
Errors

• Example: Automated Thrust Reverser
– Derived Interface Specification

• reverse_enabled IFF wheel_pulses_on
– Domain Properties Assumed by Developers

�wheel_pulses_on IFF wheels_turning
�wheels_turning IFF moving_on_runway

– Aquaplaning Wheels
• moving_on_runway is TRUE
• wheels_turning is FALSE

January 29, 2002 © Kenneth M. Anderson, 2002 13

Delving Deeper

• The requirements/design gap is a significant
challenge to software development
– Lets dig deeper and examine

• The problem context of software development
• Domains

– And return to the concept of identity

January 29, 2002 © Kenneth M. Anderson, 2002 14

Problem Context vs. Problem

• One step in making requirements easier is
understanding the difference between the problem
context and the problem

January 29, 2002 © Kenneth M. Anderson, 2002 15

What’s the problem?

• There is a river. On one side of the river there is a farmer,
with a fox, a rabbit, and a prize cabbage. There is a rowing
boat, complete with oars, moored on that side of the river.
On the other side of the river is a market. There is room in
the boat for any two of the four: farmer, fox, rabbit, and
cabbage. The fox is hungry, and so is the rabbit. Foxes like
to eat rabbits and rabbits like to eat cabbages.

January 29, 2002 © Kenneth M. Anderson, 2002 16

Problem Context vs. Problem,
continued

• There is typically one problem context, but there may be
multiple possible problems

• In software development, our project is to build a machine.
The problem context is
– the part of the world in which the machine will be installed
– the part of the world in which the effects and benefits of the

installed machine will be felt and evaluated

January 29, 2002 © Kenneth M. Anderson, 2002 17

Software Development Problem Context

Application
Domain Machine

This line is important; it represents
shared phenomena

We want to build a machine that will solve a particular
problem; so to determine the problem we must
understand the (application) domain

January 29, 2002 © Kenneth M. Anderson, 2002 18

Domains

• What is a domain?
– “In building a typical large software system, the

analyst generally has to deal with a number of
distinctly different subject matters, or domains.
Each domain can be thought of as a separate
world inhabited by its own conceptual entities,
or objects”

• From Object Lifecycles by Shlaer and Mellor
– both the application domain and the machine are domains

January 29, 2002 © Kenneth M. Anderson, 2002 19

Subdomains: How Many?
• Patients in an intensive-care ward in a hospital are monitored by

electronic analog devices attached to their bodies by sensors of various
kinds.

• Through the sensors the devices measure the patients’ vital factors: one
device measures pulse rate, another temperature, another blood
pressure, and so on. A program is needed to read the factors, at a
frequency specified for each patient, and store them in a database.

• The factors read are to be compared with safe ranges specified for each
patient, and readings that exceed the safe ranges are to be reported by
alarm messages displayed on the screen of the nurse’s station. An
alarm message is also to be displayed if any analog device fails.

January 29, 2002 © Kenneth M. Anderson, 2002 20

The Principle of Domain
Relevance

• “Everything that’s relevant to the requirements
must appear in some part of the application
domain”
– If you identify a sub-domain that seems to have no

relevance to the requirements, then you have picked a
domain outside of the application domain

• Important consequence: the application domain is
not limited to the parts of the world directly
connected to the Machine

January 29, 2002 © Kenneth M. Anderson, 2002 21

The Context Diagram

• Useful in tracking the relationships between
domains
– identify those domains that are directly

connected to the machine
• draw them as nodes connected to the machine node

– then attach the remaining domains

January 29, 2002 © Kenneth M. Anderson, 2002 22

Example

Machine

Warehouses

Customers

Orders

Goods

Accounting

Website

A B
“A contains B”

January 29, 2002 © Kenneth M. Anderson, 2002 23

Domain Interactions

• Domains interact via Shared Phenomena
– Take the intensive care unit example

1. A patient’s temperature increases one degree
2. A sensor detects this change and updates its

internal state
3. The machine detects this change and updates the

database
4. The machine may later notify the nurses station

January 29, 2002 © Kenneth M. Anderson, 2002 24

More on Domain Interactions

• Shared Phenomena are important but internal properties of
a domain are important too
– a device updating its register based on a change reported by a

sensor is an internal property
• So, how do we determine if our breakdown of an

application domain is good? (whether each domain can be
considered separately?)
– the answer is that the internal properties and behaviors of each

domain must be largely independent and only interact minimally
via shared phenomena

– similar to the software engineering terms of coupling and
cohesion; want high cohesion and low coupling of domains

January 29, 2002 © Kenneth M. Anderson, 2002 25

Why are domains important?

• Domains contain Phenomena
– And shared phenomena between the application

domain and the machine can lead to
requirements

• Phenomena are often modeled as
– entities and relations
– events involving processes

January 29, 2002 © Kenneth M. Anderson, 2002 26

Entities and Relations

• Managing Courses at a College
• Entities

– Courses, Subjects, Lecturers, Students
• Relations

– Attends, Covered-By, Taught-By, etc.
• Is this enough to model a domain, to capture

all relevant phenomena?

January 29, 2002 © Kenneth M. Anderson, 2002 27

Events involving Processes

• Automatic Turnstile (say for a Subway)
• Events

– InsertTicket, UpdateTicket, ReturnTicket,
Lock, Unlock, Enter

• Processes
– Turnstile, Customer

• Is this enough to model a domain?

January 29, 2002 © Kenneth M. Anderson, 2002 28

Clearly Not!

• In an entity-relation view, you are still going to need
events and processes
– and vice versa

• This is the result of the fact that the “real world” is too
complex and varied to be modeled by a single
phenomenology
– You need multiple ones to do it right
– However, there is a “lowest common denominator” which can

serve as a useful starting point

January 29, 2002 © Kenneth M. Anderson, 2002 29

Facts about Individuals

• A fact is a simple truth about the world
– 23 is prime; 6 is between 4 and 9;
– Ann is a manager

• A fact is, thus, the smallest unit of observation about a
domain, the smallest phenomenon

• Larger and more complex observations can be broken
down into facts
– “All employees are people” is not a fact; it’s a complex assertion

about many facts

January 29, 2002 © Kenneth M. Anderson, 2002 30

Facts and Propositions

• It is important to distinguish facts from
propositions
– facts are phenomena in the world
– propositions are statements of what may be

facts
• “Ann is a manager” is a proposition

– If Ann is a manager, this statement is true (and
is a fact)

January 29, 2002 © Kenneth M. Anderson, 2002 31

Facts Involve Individuals

• Dr. Anderson wrote this lecture
– is a fact about two individuals

• In a domain, an individual can be anything
at all…
– a person, a number, an event, a date

• …as long as you can distinguish one from
the other, that is they must have distinct
identities

January 29, 2002 © Kenneth M. Anderson, 2002 32

Choosing Individuals

• Picking the individuals of a domain is key to
shaping how you view the world and what you can
accomplish

• But it is often not easy!
– “Nine teachers and 23 alumni are coming to a school

meeting. Each wants a cup of coffee. How many cups
do you need?”

– Two mechanics start with two cars of the same make
and model; they begin to swap parts of the car (first
wheels, then doors, etc.) At what point have they
swapped cars?

January 29, 2002 © Kenneth M. Anderson, 2002 33

More examples

• An airline flight may be regarded as an individual. But two
flights may be merged into one journey made by one
airplane. Or one flight may have intermediate stops
between its starting and ending airports, with different
planes used for different sections of the same flight

• A phone call may be regarded as individual. But suppose
A calls B, B establishes a conference call with C, B then
drops out leaving A talking to C. How many calls is that?
How many calls are on a “chat line” where an ever
changing population of people dial into an unending
conversation?

January 29, 2002 © Kenneth M. Anderson, 2002 34

What’s the problem? Identity...

• If you are forced to take a view of the world
– where you cannot reliably distinguish one flight from another, or

one call from another, or one car from another
• then cars, flights, and calls cannot be individuals

• To say that X is identical to Y is to say that they are one
and the same individual

• A related notion is “similarity”; often two individuals are
similar because they share a common trait
– B’s birthday is the same as C’s birthday
– B and C are similar; their birthdays are identical

January 29, 2002 © Kenneth M. Anderson, 2002 35

Summing Up

• In software development,
– we have a problem context that includes an application domain and

a machine
– since the machine is a solution, we need to understand the

application domain to understand the problem we are facing
– a domain consists of phenomena, which we can model (e.g.

understand) as facts concerning individuals
– if we can pick the right individuals within a domain, we can

identify relevant facts or phenomena about the domain
– In particular, we increase our chance of finding shared phenomena

between the application domain and the machine; this shared
phenomena can serve as a specification for a program

January 29, 2002 © Kenneth M. Anderson, 2002 36

What’s Next?

• Descriptions
– designations and definitions

• a structured approach to requirements analysis
– refutable and rough sketch

• states a description can be in

• Events and Intervals
– representing time in our descriptions

• We will then explore the tutorial that appears in
Section 2.2 of your textbook and then look at
object-oriented analysis in more detail

