
Lecture 28: Refactoring

Kenneth M. Anderson

Object-Oriented Analysis and Design

CSCI 6448 - Spring Semester, 2001

April 26, 2001 © Kenneth M. Anderson, 2001 2

Goals of Lecture

• Cover Refactoring
– Background

– Examples

April 26, 2001 © Kenneth M. Anderson, 2001 3

What is Refactoring

• Refactoring is the process of changing a
software system such that
– the external behavior of the system does not

change

– but the internal structure of the system is
improved

• This is sometimes called
– “Improving the design after it has been written”

April 26, 2001 © Kenneth M. Anderson, 2001 4

(Very) Simple Example

• Consolidate Duplicate Conditional Fragments (page 243); This
if (isSpecialDeal()) {

total = price * 0.95;
send()

} else {
total = price * 0.98;
send()

}
• becomes this

if (isSpecialDeal()) {
total = price * 0.95;

} else {
total = price * 0.98;

}
send();

April 26, 2001 © Kenneth M. Anderson, 2001 5

Refactoring is thus Dangerous!

• Manager’s point-of-view
– If my programmers spend time “cleaning up the

code” then that’s less time implementing
required functionality (and my schedule is
slipping as it is!)

• To address this concern
– Refactoring needs to be systematic, incremental,

and safe

April 26, 2001 © Kenneth M. Anderson, 2001 6

Refactoring is Useful Too

• Essentially, it is acknowledging the fact that it will be
difficult to get a design right the first time
– and as a program’s requirements change, the design may need to

change
• refactoring provides techniques for evolving the design in small

incremental steps

• Benefits
– Often code size is reduced after a refactoring

– Confusing structures are transformed into simpler structures
• which are easier to maintain and understand

April 26, 2001 © Kenneth M. Anderson, 2001 7

A “cookbook” can be useful

• New Book
– Refactoring: Improving the Design of Existing

Code
• by Martin Fowler (and Kent Beck, John Brant,

William Opdyke, and Don Roberts)

• Similar to the Gang of Four’s Design
Patterns
– Provides “refactoring patterns”

April 26, 2001 © Kenneth M. Anderson, 2001 8

Principles in Refactoring

• Fowler’s definition
– Refactoring (noun)

• a change made to the internal structure of software
to make it easier to understand and cheaper to
modify without changing its observable behavior

– Refactoring (verb)
• to restructure software by applying a series of

refactorings without changing its observable
behavior

April 26, 2001 © Kenneth M. Anderson, 2001 9

Principles, continued

• The purpose of refactoring is
– to make software easier to understand and

modify

• contrast this with performance optimization
– again functionality is not changed, only internal

structure; however performance optimizations
often involve making code harder to understand
(but faster!)

April 26, 2001 © Kenneth M. Anderson, 2001 10

Principles, continued

• When you systematically apply refactoring,
you wear two hats
– adding function

• functionality is added to the system without
spending any time cleaning the code

– refactoring
• no functionality is added, but the code is cleaned up,

made easier to understand and modify, and
sometimes is reduced in size

April 26, 2001 © Kenneth M. Anderson, 2001 11

Principles, continued

• How do you make refactoring safe?
– First, use refactoring “patterns”

• Fowler’s book assigns “names” to refactorings in the same way
that the GoF’s book assigned names to patterns

– Second, test constantly!
• This ties into the extreme programming paradigm, you write

tests before you write code, after you refactor code, you run the
tests and make sure they all still pass

– if a test fails, the refactoring broke something, but you know
about it right away and can fix the problem before you move on

April 26, 2001 © Kenneth M. Anderson, 2001 12

Why should you refactor?

• Refactoring improves the design of software
– without refactoring, a design will “decay” as people make changes

to a software system

• Refactoring makes software easier to understand
– because structure is improved, duplicated code is eliminated, etc.

• Refactoring helps you find bugs
– Refactoring promotes a deep understanding of the code at hand,

and this understanding aids the programmer in finding bugs and
anticipating potential bugs

• Refactoring helps you program faster
– because a good design enables progress

April 26, 2001 © Kenneth M. Anderson, 2001 13

When should you refactor?

• The Rule of Three
– Three strikes and you refactor
– refers to duplication of code

• Refactor when you add function
– to make it easier to add the function
– or to clean things up after the function is added

• Refactor when you need to fix a bug
• Refactor as you do a code review

April 26, 2001 © Kenneth M. Anderson, 2001 14

Problems with Refactoring

• Databases
– Business applications are often tightly coupled

to underlying databases
• code is easy to change; databases are not

– Changing Interfaces
• Some refactorings require that interfaces be changed

– Design Changes that are difficult to refactor
• This is why Extreme Programming says that

software engineers need to have “courage”!

April 26, 2001 © Kenneth M. Anderson, 2001 15

Refactoring: Where to Start?

• How do you identify code that needs to be
refactored?
– Fowler uses an olfactory analogy (attributed to

Kent Beck)

– Look for “Bad Smells” in Code
• A very valuable chapter in Fowler’s book

• It presents examples of “bad smells” and then
suggests refactoring techniques to apply

April 26, 2001 © Kenneth M. Anderson, 2001 16

Bad Smells in Code

• Duplicated Code
– bad because if you modify one instance of

duplicated code but not the others, you have
introduced a bug!

• Long Method
– long methods are more difficult to understand;

performance concerns with respect to lots of
short methods are largely obsolete

April 26, 2001 © Kenneth M. Anderson, 2001 17

Bad Smells in Code

• Large Class
– Large classes try to do too much, which reduces

cohesion

• Long Parameter List
– hard to understand, can become inconsistent

• Divergent Change
– Deals with cohesion; symptom: one type of change

requires changing one subset of methods; another type
of change requires changing another subset

April 26, 2001 © Kenneth M. Anderson, 2001 18

Bad Smells in Code

• Shotgun Surgery
– a change requires lots of little changes in a lot of

different classes

• Feature Envy
– A method requires lots of information from some other

class (move it closer!)

• Data Clumps
– attributes that clump together but are not part of the

same class

April 26, 2001 © Kenneth M. Anderson, 2001 19

Bad Smells in Code

• Primitive Obsession
– characterized by a reluctance to use classes instead of

primitive data types

• Switch Statements
– Switch statements are often duplicated in code; they can

typically be replaced by use of polymorphism (let OO
do your selection for you!)

• Parallel Inheritance Hierarchies
– Similar to Shotgun Surgery; each time I add a subclass

to one hierarchy, I need to do it for all related
hierarchies

April 26, 2001 © Kenneth M. Anderson, 2001 20

Bad Smells in Code

• Lazy Class
– A class that no longer “pays its way”

• e.g. may be a class that was downsized by refactoring, or
represented planned functionality that did not pan out

• Speculative Generality
– “Oh I think we need the ability to do this kind of thing

someday”

• Temporary Field
– An attribute of an object is only set in certain

circumstances; but an object should need all of its
attributes

April 26, 2001 © Kenneth M. Anderson, 2001 21

Bad Smells in Code

• Message Chains
– a client asks an object for another object and then asks

that object for another object etc. Bad because client
depends on the structure of the navigation

• Middle Man
– If a class is delegating more than half of its

responsibilities to another class, do you really need it?

• Inappropriate Intimacy
– Pairs of classes that know too much about each other’s

private details

April 26, 2001 © Kenneth M. Anderson, 2001 22

Bad Smells in Code

• Alternative Classes with Different
Interfaces
– Symptom: Two or more methods do the same

thing but have different signature for what they
do

• Incomplete Library Class
– A framework class doesn’t do everything you

need

April 26, 2001 © Kenneth M. Anderson, 2001 23

Bad Smells in Code

• Data Class
– These are classes that have fields, getting and setting

methods for the fields, and nothing else; they are dumb
data holders, but objects should be about data AND
process

• Refused Bequest
– A subclass ignores most of the functionality provided

by its superclass

• Comments (!)
– Comments are sometimes used to hide bad code

April 26, 2001 © Kenneth M. Anderson, 2001 24

The Catalog

• The refactoring book has 72 refactoring
patterns!
– I’m only going to cover a few of the more

common ones, including
• Extract Method
• Replace Temp with Query
• Move Method
• Replace Conditional with Polymorphism
• Introduce Null Object

April 26, 2001 © Kenneth M. Anderson, 2001 25

Extract Method

• You have a code fragment that can be
grouped together

• Turn the fragment into a method whose
name explains the purpose of the fragment

• Example, next slide

April 26, 2001 © Kenneth M. Anderson, 2001 26

Extract Method, continued

void printOwing(double amount) {
printBanner()
//print details
System.out.println(“name: ” + _name);
System.out.println(“amount: ” + amount);

}
===
void printOwing(double amount) {

printBanner()
printDetails(amount)

}

void printDetails(double amount) {
System.out.println(“name: ” + _name);
System.out.println(“amount: ” + amount);

}

April 26, 2001 © Kenneth M. Anderson, 2001 27

Replace Temp with Query

• You are using a temporary variable to hold
the result of an expression

• Extract the expression into a method;
Replace all references to the temp with the
expression. The new method can then be
used in other methods

• Example, next slide

April 26, 2001 © Kenneth M. Anderson, 2001 28

Replace Temp with Query,
continued

double basePrice = _quantity * _itemPrice
if (basePrice > 1000)

return basePrice * 0.95;
else

return basePrice * 0.98;
==============================
if (basePrice() > 1000)

return basePrice() * 0.95;
else

return basePrice() * 0.98;
…
double basePrice() {

return _quantity * _itemPrice;
}

April 26, 2001 © Kenneth M. Anderson, 2001 29

Move Method

• A method is, or will be, using or used by
more features of another class than the class
on which it is defined

• Create a new method with a similar body in
the class it uses most. Either turn the old
method into a simple delegation, or remove
it altogether

April 26, 2001 © Kenneth M. Anderson, 2001 30

Replace Conditional with
Polymorphism

• You have a conditional that chooses
different behavior depending on the type of
an object

• Move each leg of the conditional to an
overriding method in a subclass. Make the
original method abstract

April 26, 2001 © Kenneth M. Anderson, 2001 31

Replace Conditional with
Polymorphism, continued

double getSpeed() {
switch (_type) {

case EUROPEAN:
return getBaseSpeed();

case AFRICAN:
return getBaseSpeed() - getLoadFactor() *
_numberOfCoconuts;

case NORWEGIAN_BLUE:
return (_isNailed) ? 0 :
getBaseSpeed(_voltage);

}
throw new RuntimeException(“Unreachable”)

}

April 26, 2001 © Kenneth M. Anderson, 2001 32

Replace Conditional with
Polymorphism, continued

Bird

getSpeed()

European

getSpeed()

African

getSpeed()

Norwegian Blue

getSpeed()

April 26, 2001 © Kenneth M. Anderson, 2001 33

Introduce Null Object

• Repeated checks for a null value

• Replace the null value with a null object

if (customer == null) {
name = “occupant”

} else {
name = customer.getName()

}
if (customer == null) {
…

Customer

getName()

Null Customer

getName()
April 26, 2001 © Kenneth M. Anderson, 2001 34

Introduce Null Object

if (customer.isNull()) {
name = “occupant”

} else {
name = customer.getName()

}
===========================
public class nullCustomer {

public String getName() { return “occupant”;}
}
===========================
customer.getName();

The conditional goes away entirely!!

