
Lecture 27: OO Design Patterns

Kenneth M. Anderson

Object-Oriented Analysis and Design

CSCI 6448 - Spring Semester, 2001

April 24, 2001 © Kenneth M. Anderson, 2001 2

Goals of Lecture

• Cover OO Design Patterns
– Background

– Examples

April 24, 2001 © Kenneth M. Anderson, 2001 3

Pattern Resources

• Pattern Languages of Programming
– Technical conference on Patterns

• The Portland Pattern Repository
– http://c2.com/ppr/

• Patterns Homepage
– http://hillside.net/patterns/patterns.html

April 24, 2001 © Kenneth M. Anderson, 2001 4

Design Patterns

• Addison-Wesley book published in 1995
– Erich Gamma

– Richard Helm

– Ralph Johnson

– John Vlissides

• Known as “The Gang of Four”

• Presents 23 Design Patterns

• ISBN 0-201-63361-2



April 24, 2001 © Kenneth M. Anderson, 2001 5

What are Patterns?

• Christopher Alexander talking about buildings and towns
– “Each pattern describes a problem which occurs over and over

again in our environment, and then describes the core of the
solution to that problem, in such a way that you can use this
solution a million times over, without ever doing it the same way
twice”

– Alexander, et al., A Pattern Language. Oxford University Press,
1977

April 24, 2001 © Kenneth M. Anderson, 2001 6

Patterns, continued

• Patterns can have different levels of abstraction

• In Design Patterns (the book),
– Patterns are not classes

– Patterns are not frameworks

– Instead, Patterns are descriptions of communicating
objects and classes that are customized to solve a
general design problem in a particular context

April 24, 2001 © Kenneth M. Anderson, 2001 7

Patterns, continued

• So, patterns are formalized solutions to
design problems
– They describe techniques for maximizing

flexibility, extensibility, abstraction, etc.

• These solutions can typically be translated
to code in a straightforward manner

April 24, 2001 © Kenneth M. Anderson, 2001 8

Elements of a Pattern

• Pattern Name
– More than just a handle for referring to the pattern

– Each name adds to a designer’s vocabulary
• Enables the discussion of design at a higher abstraction

• The Problem
– Gives a detailed description of the problem addressed by the

pattern

– Describes when to apply a pattern
• Often with a list of preconditions



April 24, 2001 © Kenneth M. Anderson, 2001 9

Elements of a Pattern, continued

• The Solution
– Describes the elements that make up the design,

their relationships, responsibilities, and
collaborations

– Does not describe a concrete solution
• Instead a template to be applied in many situations

April 24, 2001 © Kenneth M. Anderson, 2001 10

Elements of a Pattern, continued

• The consequences
– Describes the results and tradeoffs of applying

the pattern
• Critical for evaluating design alternatives

– Typically include
• Impact on flexibility, extensibility, or portability

• Space and Time tradeoffs

• Language and Implementation issues

April 24, 2001 © Kenneth M. Anderson, 2001 11

Design Pattern Template

• Pattern Name and
Classification
– Creational

– Structural

– Behavioral

• Intent

• Also Known As

• Motivation

• Applicability

• Structure

• Participants

• Collaborations

• Consequences

• Implementation

• Sample Code

• Known Uses

• Related Patterns

April 24, 2001 © Kenneth M. Anderson, 2001 12

Examples

• Singleton

• Factory Method

• Adapter

• Decorator

• Command

• State



April 24, 2001 © Kenneth M. Anderson, 2001 13

Singleton

• Intent
– Ensure a class has only one instance, and

provide a global point of access to it

• Motivation
– Some classes represent objects where multiple

instances do not make sense or can lead to a
security risk (e.g. Java security managers)

April 24, 2001 © Kenneth M. Anderson, 2001 14

Singleton, continued

• Applicability
– Use the Singleton pattern when

• there must be exactly one instance of a class, and it
must be accessible to clients from a well-known
access point

• when the sole instance should be extensible by
subclassing, and clients should be able to use an
extended instance without modifying their code

April 24, 2001 © Kenneth M. Anderson, 2001 15

Singleton, continued

• Participants
– Just the Singleton class

• Collaborations
– Clients access a Singleton instance solely through

Singleton’s Instance operation

• Consequences
– Controlled access to sole instance

– Reduced name space (versus global variables)

– Permits a variable number of instances (if desired)

April 24, 2001 © Kenneth M. Anderson, 2001 16

Singleton Structure

Singleton

static Instance() {return uniqueInstance}
public SingletonOperation()
public GetSingletonData()

private static uniqueInstance
private singletonData



April 24, 2001 © Kenneth M. Anderson, 2001 17

Factory Method

• Intent
– Define an interface for creating an object, but

let subclasses decide which class to instantiate

• Also Known As
– Virtual Constructor

• Motivation
– Frameworks define abstract classes, but any particular

domain needs to use specific subclasses; how can the
framework create these subclasses?

April 24, 2001 © Kenneth M. Anderson, 2001 18

Factory Method, continued

• Applicability
– Use the Factory Method pattern when

• a class can’t anticipate the class of objects it must
create

• a class wants its subclasses to specify the objects it
creates

• classes delegate responsibility to one of several
helper subclasses, and you want to localize the
knowledge of which helper subclass is the delegate

April 24, 2001 © Kenneth M. Anderson, 2001 19

Factory Method, continued

• Participants
– Product

• Defines the interface of objects the factory method creates

– Concrete Product
• Implements the Product Interface

– Creator
• declares the Factory method which returns an object of type

Product

– Concrete Creator
• overrides the factory method to return an instance of a

Concrete Product

April 24, 2001 © Kenneth M. Anderson, 2001 20

Factory Method Structure

Product

ConcreteProduct

Creator

ConcreteCreator

FactoryMethod()

FactoryMethod()
AnOperation()

«instantiate»

product = FactoryMethod()

return new ConcreteProduct()



April 24, 2001 © Kenneth M. Anderson, 2001 21

Factory Method Consequences

• Factory methods eliminate the need to bind
application-specific classes into your code

• Potential disadvantage is that clients must use
subclassing in order to create a particular
ConcreteProduct
– In single-inherited systems, this constrains your

partitioning choices

• Provides hooks for subclasses
• Connects parallel class hierarchies

April 24, 2001 © Kenneth M. Anderson, 2001 22

Adapter

• Intent
– Convert the interface of a class into another interface clients expect.

Adapter lets classes work together that could not otherwise
because of incompatible interfaces

• Also Known As
– Wrapper

• Motivation
– Sometimes a toolkit class that is designed for reuse is not reusable

because its interface does not match the domain-specific interface
an application requires

• Page 139-140 of Design Patterns provides an example

April 24, 2001 © Kenneth M. Anderson, 2001 23

Adapter, continued

• Applicability
– Use the Adapter pattern when

• you want to use an existing class, and its interface
does not match the one you need

• you want to create a reusable class that cooperates
with unrelated or unforeseen classes

April 24, 2001 © Kenneth M. Anderson, 2001 24

Adapter, continued

• Participants
– Target

• defines the domain-specific interface that Client uses

– Client
• collaborates with objects conforming to the Target interface

– Adaptee
• defines an existing interface that needs adapting

– Adapter
• adapts the interface of Adaptee to the Target interface



April 24, 2001 © Kenneth M. Anderson, 2001 25

Adapter Structure

Client
Target
Request()

Adaptee
SpecificRequest()

Adapter
Request()

Class Adapter

SpecificRequest()

April 24, 2001 © Kenneth M. Anderson, 2001 26

Adapter Structure

Client
Target
Request()

Adapter
Request()

Adaptee
SpecificRequest()

Object Adapter

adaptee.SpecificRequest()
adaptee

April 24, 2001 © Kenneth M. Anderson, 2001 27

Adapter, continued

• Collaborations
– Clients call operations on an Adapter instance. In turn,

the adapter calls Adaptee operations that carry out the
request

• Consequences
– Class Adapters

• adapts Adaptee to Target by committing to concrete Adapter
class; Adapter can override Adaptee behavior

– Object Adapters
• lets a single Adapter work with many Adaptees; makes it

harder to override Adaptee behavior

April 24, 2001 © Kenneth M. Anderson, 2001 28

Decorator

• Intent
– Attach additional responsibilities to an object

dynamically. Decorators provide a flexible alternative
to subclassing for extending functionality

• Also Known As
– Wrapper

• Motivation
– Sometimes we want to add responsibilities to individual

objects, not to an entire class (like adding scrollbars to
windows in GUI toolkits)



April 24, 2001 © Kenneth M. Anderson, 2001 29

Decorator, continued

• Applicability
– Use Decorator

• to add responsibilities to individual objects dynamically
• for responsibilities that can be withdrawn
• when extension by subclassing is impractical

• Participants
– Component

• defines interface of objects to decorate

– ConcreteComponent
• defines an object to decorate

– Decorator and ConcreteDecorator
• Decorator maintains a reference to component and defines an interface that

conforms to Component’s interface; ConcreteDecorator adds responsibilities
to the component

April 24, 2001 © Kenneth M. Anderson, 2001 30

Decorator, continued

• Structure
– Page 177 of Design Patterns

• Collaborations
– Decorator forwards requests to its Component object. It may

optionally perform additional operations before and after
forwarding the request

• Consequences
– More flexibility than static inheritance
– Avoids feature-laden classes high up in the hierarchy
– A decorator and its component are not identical
– Lots of little objects

April 24, 2001 © Kenneth M. Anderson, 2001 31

Command

• Intent
– Encapsulate a request as an object, thereby letting you

parameterize clients with different requests, queue or
log requests, and support undoable operations

• Also Known As
– Action, Transaction

• Motivation
– Separate details of a request from the requestor and the

requestor from the receiver of the request
• Example: Menus

April 24, 2001 © Kenneth M. Anderson, 2001 32

Command, continued

• Applicability
– Use the Command pattern to

• parameterize objects by an action to perform

• specify, queue, and execute requests

• support undo and logging

• structure a system around high-level operations built
on primitive command



April 24, 2001 © Kenneth M. Anderson, 2001 33

Command, continued

• Participants
– Command

• declares an interface for executing an operation

– ConcreteCommand
• defines a binding between a Receiver object and an action
• implements Command interface

– Client
• creates a Concrete Command object and sets its receiver

– Invoker
• asks the command to carry out the request

– Receiver
• knows how to perform the operations of the command

April 24, 2001 © Kenneth M. Anderson, 2001 34

Command, continued

• Structure
– Page 236 of Design Patterns

• Collaborations
– The client creates a ConcreteCommand object and

specifies its receiver
– An Invoker object stores the ConcreteCommand
– The invoker issues a request by calling Execute on

Command
– The ConcreteCommand invokes operations on the

Receiver
– Page 237 of Design Patterns

April 24, 2001 © Kenneth M. Anderson, 2001 35

Command, continued

• Consequences
– Command decouples the object that invokes an

operation from the one that implements it

– Commands are first-class objects

– Commands can be assembled into composite
commands

– It is easy to add new commands

April 24, 2001 © Kenneth M. Anderson, 2001 36

State

• Intent
– Allow an object to alter its behavior when its

internal state changes

• Motivation
– TCPConnection example

– A TCPConnection class must respond to an
open operation differently based on its current
state: established, closed, listening, etc.



April 24, 2001 © Kenneth M. Anderson, 2001 37

State, continued

• Applicability
– Use State when

• an object’s behavior depends on its state
• operations have large, multipart conditional statements that depend on the

object’s state

• Participants
– Context

• defines the interface of interest to clients
• maintains an instance of a ConcreteState subclass

– State
• defines an interface for encapsulating the behavior associated with a particular

state of the Context

– ConcreteState
• each subclass of State implements a different behavior that implements the

correct behavior for a particular state

April 24, 2001 © Kenneth M. Anderson, 2001 38

State, continued

• Structure
– Page 306 of Design Patterns

• Collaborations
– Context delegates state-specific requests to the current

ConcreteState object
– A context may pass itself as an argument to the State

object handling the request
– Context is the primary interface of clients
– Either Context or ConcreteState subclasses can decide

which state succeeds another and under what
circumstances

April 24, 2001 © Kenneth M. Anderson, 2001 39

State, continued

• Consequences
– State localizes state-specific behavior and

partitions behavior for different states

– State makes state transitions explicit

– State objects can be shared


