
Lecture 26: OO Design Methods:
Mathiassen, Part 6

Kenneth M. Anderson

Object-Oriented Analysis and Design

CSCI 6448 - Spring Semester, 2001

April 19, 2001 © Kenneth M. Anderson, 2001 2

Goals of Lecture

• Cover Mathiassen’s method for component
design (e.g. low-level design)

• Activities
– Model Component

– Function Component

– Connecting Components

April 19, 2001 © Kenneth M. Anderson, 2001 3

Component Design

• Purpose
– To determine an implementation of requirements within an

architectural framework

• Definitions
– Component: A collection of program parts that constitutes a whole

and has well-defined responsibilities
– Connection: The implementation of a dependency relation

• Principles
– Respect the component architecture
– Adapt component designs to the technical possibilities

• Results
– A description of the system’s components

April 19, 2001 © Kenneth M. Anderson, 2001 4

Component Design

• Last step before implementation
• Previous Steps

– Problem Domain Analysis
– Application Domain Analysis
– Architectural Design

• Meaning of First Principle
– Do not change the architectural design for short

term advantage



April 19, 2001 © Kenneth M. Anderson, 2001 5

Component Design

• Input
– Architectural Specifications

• Steps (Page 232)
– Design Components

• Both Model and Function

– Design Component Connections

• Output
– Component Specifications

April 19, 2001 © Kenneth M. Anderson, 2001 6

Model Component Design

• Purpose
– To represent a model of a problem domain

• Definitions
– Model Component: A part of the system that implements the

problem domain model
– Attribute: A descriptive property of a class or an event

• Principles
– Represent Events as classes, structures, and attributes
– Choose the simplest representation of events

• Results
– A class diagram of the model component;

note: component ≠ class

April 19, 2001 © Kenneth M. Anderson, 2001 7

Background

• Central Concept: Structure
– Model Components should reflect structure of problem

domain’s relevant conceptual relations

• Foundation
– OO Model of Problem Domain Analysis

• Main Task
– Represent problem domain events using mechanisms of

OO programming languages

• Results
– Revised problem-domain class diagram

April 19, 2001 © Kenneth M. Anderson, 2001 8

Designing the Model Component

• Input
– Class Diagram
– Behavioral Patterns
– Component Specs from Arch. Design

• Steps (page 239)
– Represent Private Events
– Represent Common Events
– Restructure Classes

• Output
– Model Component Specification

• Example: Figure 12.1, 12.2, 12.4



April 19, 2001 © Kenneth M. Anderson, 2001 9

Background

• Key concept of problem-domain analysis returns
– Events! (Event Tables guide process of model component design)

• Events
– are grounded in problem domain

– have attributes

– cause model updates when they occur

• Behavioral Patterns
– Specify legal traces of events

• Method: Use behavioral patterns to determine information
the model components must capture

April 19, 2001 © Kenneth M. Anderson, 2001 10

Step 1: Represent Private Events

• Private Events involve only one problem
domain object
– Use Event Table to identify private events

• Use guidelines of figure 12.5 to modify
problem-domain class diagram
– Single events: store attributes in class

– Multiple events: create new event class

April 19, 2001 © Kenneth M. Anderson, 2001 11

Example: Customer Class

• Has two private events (Fig. 12.2)
– Credit Approval

• Attributes: date, name, address

– Change Address
• Attributes: date, address

• Represent Events (Figure 12.6)
– Credit Approval occurs once

• Add attributes to customer class

– Change Address can happen more than once
• Create new class; each instance corresponds to one occurrence

of the event

April 19, 2001 © Kenneth M. Anderson, 2001 12

Step 2: Represent Common
Events

• Common Events involve more than one problem-
domain object

• Guidelines
– Choose one object to represent the event

– All other objects access event info via structural
relationships

• Heuristic
– Choose simplest structure

• Use event table to guide you



April 19, 2001 © Kenneth M. Anderson, 2001 13

Example: Customer and Account

• Open Account and Close Account
– Occur only once for each account
– Occur multiple times for Customer
– Simplest Representation

• Attributes on Account Object
– account state, opendate, closedate

• Deposit and Withdraw
– Occur multiple times for both customer and account
– Need to evaluate multiple options and choose simplest

structure; see Figure 12.9

April 19, 2001 © Kenneth M. Anderson, 2001 14

Step 3: Restructure Classes

• Simplify Revised Class Diagram
– Generalization (Figure 12.10)

• Multiple classes might be replaced a common
superclass

– Association (Figure 12.11)
• Some associations may be obsolete

– Embedded Iterations (Figure 12.12 and 12.13)
• Simple analysis models may not specify enough

information to produce correct designs

April 19, 2001 © Kenneth M. Anderson, 2001 15

Function Component Design

• Purpose
– To determine the implementation of functions

• Definitions
– Function Component: A part of a system that implements functional

requirements

– Operation: A process property specified in a class and activated through
class objects

• Principles
– Base the design on function types

– Specify Complex Operations

• Results
– A class diagram with operations and specifications of complex operations

April 19, 2001 © Kenneth M. Anderson, 2001 16

Background

• Behavior in OO systems is described as
operations on a system’s classes
– Behavior is activated by invoking these

operations that reside within objects

• Since an OO system’s interactions
constitute its behavior, and functions are
used to enable interactions, functions must
be implemented by operations



April 19, 2001 © Kenneth M. Anderson, 2001 17

Model Component Design

• Inputs
– Function List, Class Diagram, Component Specs

– Model Component Specs

• Steps (page 252)
– Design functions as operations

• Design not implement! Simple operations first!

– Explore patterns

– Specify Complex Operations

• Results
– Modified Model Components, Function Component Specs

April 19, 2001 © Kenneth M. Anderson, 2001 18

Step 1: Design Functions as
Operations

• Design functions based on type
– Update, Read, Compute, and Signal

• Figure 13.3 provides guidelines for each type

• In general, sequence diagrams can be used to
specify operations
– Note: I don’t like the diagrams (Figures 13.4-13.7)

presented by Mathiassen in this section because they do
not show legal UML

April 19, 2001 © Kenneth M. Anderson, 2001 19

Step 2: Explore Patterns

• Model-Class Placement (Figure 13.8)
– Operations are best placed in a model-component class with

compatible attributes and operations

• Function-Class Placement (Figure 13.9)
– If an operation involves objects from different model components,

then it must be placed in a function component

• Strategy (Figure 13.10)
– Useful in designing an operation that might be implemented in

multiple ways; allows dynamic change of the operation at run-time

• Active Function (Figure 13.11)
– Active functions reside in Active Objects

April 19, 2001 © Kenneth M. Anderson, 2001 20

Step 3: Specify Complex
Operations

• Operations can be specified in a number of
ways
– Textually (Figure 13.12)

– Graphically
• Sequence Diagrams

• State Chart Diagrams

• A system’s total behavior can be
represented using state charts



April 19, 2001 © Kenneth M. Anderson, 2001 21

Connecting Components Activity

• Purpose
– To connect system components

• Definitions
– Coupling: A measure of how closely two classes or components

are connected
– Cohesion: A measure of how well a class or component is tied

together

• Principle
– Highly cohesive classes and loosely coupled components

• Results
– Class Diagram

April 19, 2001 © Kenneth M. Anderson, 2001 22

Coupling

• A negative measure, we wish to minimize it
• Four types

– Outside coupling: Class A makes use of the public aspects of Class
B

– Inside Coupling: Operation A refers directly to private properties
of its host class

– Coupling from below: A subclass refers to private properties of its
superclass

– Sideways Coupling: A class refers directly to private properties in
some other class

• Low coupling can be achieved by using outside coupling
and avoiding sideways coupling

April 19, 2001 © Kenneth M. Anderson, 2001 23

Cohesion

• A positive measure, we try to maximize it
• Properties of Class Cohesion

– Operations constitute a functional whole
– Attributes and object structures describe objects with well-defined

states
– Operations use each other

• Properties of Component Cohesion
– Component classes are conceptually related
– Structural relations among classes are primarily generalizations

and aggregations
– Key operations can be carried out within component

April 19, 2001 © Kenneth M. Anderson, 2001 24

Connecting Components

• Input
– Class diagram and Component Specs

• Steps (page 274)
– Connect Classes
– Explore Patterns
– Evaluate Connections

• Output
– Class diagrams and component specs



April 19, 2001 © Kenneth M. Anderson, 2001 25

Step 1: Connect Classes

• Three types of component connections
– Aggregating another component’s classes

(Figure 14.2)

– Specializing another component’s public class
(Figure 14.3)

– Calling public operations in another
component’s objects (Figure 14.4)

• The call connection is preferred

April 19, 2001 © Kenneth M. Anderson, 2001 26

Step 2: Explore Patterns

• Observer
– Basic Structure (Figure 14.5)

• Abstract subject and observer

• Concrete subject and observers

– Basic Pattern of Use (Figure 14.6)

– Example of Use (Figure 14.7)

April 19, 2001 © Kenneth M. Anderson, 2001 27

Step 3: Evaluate Connections

• Evaluate Connections to ensure low
coupling is being achieved

• Figure 14.8 presents a checklist of concerns
for each type of coupling


