
Lecture 25: OO Design Methods:
Mathiassen, Part 5

Kenneth M. Anderson

Object-Oriented Analysis and Design

CSCI 6448 - Spring Semester, 2001

April 17, 2001 © Kenneth M. Anderson, 2001 2

Goals of Lecture

• Cover Mathiassen’s method for
architectural design (e.g. high-level design)

• Activities
– Criteria

– Components

– Processes

April 17, 2001 © Kenneth M. Anderson, 2001 3

Architectural Design

• Otherwise known as high-level design
– What are the subsystems?

• What are their interfaces?

• What are their components?

– How are they arranged?
• What processes does the system support?

• Purpose
– To structure a software system

April 17, 2001 © Kenneth M. Anderson, 2001 4

Definitions & Principles

• Definitions
– Criterion

• A preferred property of an architecture

– Component Architecture
• A system structure composed of interconnected components

– Process Architecture
• A system execution structure composed of interdependent processes

• Principles
– Define and prioritize criteria

– Bridge criteria and technical platform

– Evaluate designs early



April 17, 2001 © Kenneth M. Anderson, 2001 5

Component and Process
Architecture

• Component Architecture focuses on the stable
aspects of a system
– Mathiassen identifies classes as the stable element in

his method

• Process Architecture focuses on the dynamic
aspects of a system
– Mathiassen identifies objects as the dynamic element in

his method

• See page 174

April 17, 2001 © Kenneth M. Anderson, 2001 6

Architectural Design

• Inputs
– Results of Analysis

• Problem Domain and Application Domain

• Steps (page 176)
– Define Criteria for the Design

– Design a component architecture

– Design a process architecture

• Outputs
– Architectural Specification

April 17, 2001 © Kenneth M. Anderson, 2001 7

The Criteria Step

• Purpose
– To set design priorities

• Definitions
– Criterion: A preferred property of an architecture

– Conditions: The technical, organizational, and human opportunities
and limits involved in performing a task

• Principles
– A good design has no major weaknesses

– A good design balances several criteria

– A good design is usable, flexible, and comprehensible

April 17, 2001 © Kenneth M. Anderson, 2001 8

More on the Criteria Step

• Inputs
– System Definition

• Steps
– Consider General Criteria
– Analyze Specific Conditions
– Prioritize

• Outputs
– Criteria for Design



April 17, 2001 © Kenneth M. Anderson, 2001 9

Classical Criterion

• Usable

• Secure

• Efficient

• Correct

• Reliable

• Maintainable

• Testable

• Flexible

• Comprehensible

• Reusable

• Portable

• Interoperable

April 17, 2001 © Kenneth M. Anderson, 2001 10

Step 1: Consider General Criteria

• Mathiassen focus on three criteria in particular
(because they have universal validity)
– Usable

• Does the design satisfy users’ needs?
• Does the design fit the technical platform?

– Flexibility
• Modularity is a critical tool (Lego example, pg. 181)

– Comprehensibility
• abstraction is a key tool
• design patterns (learn pattern once; use it many times)

April 17, 2001 © Kenneth M. Anderson, 2001 11

Step 2: Analyze Specific
Conditions

• The conditions of the environment that the
system will be placed in, influence design
– Credit Card System, page 182-183

• Criteria: Security, Scalability, Performance

• Traditional conditions
– Technical, Organizational, Human

– figure 9.3, page 184

April 17, 2001 © Kenneth M. Anderson, 2001 12

Step 3: Prioritize

• After you have identified the criteria
important for your system, you must
arrange them according to priority

• Figure 9.4 shows one form that can be used
to help this process (page 185)



April 17, 2001 © Kenneth M. Anderson, 2001 13

The Component Step

• Purpose
– To create a comprehensible and flexible system structure

• Definitions
– Component Architecture: A system structure of interconnected

components
– Component: A collection of program parts (classes) that constitutes

a whole and has well-defined responsibilities

• Principles
– Reduce complexity by separating concerns
– Reflect stable context structures
– Reuse existing components

April 17, 2001 © Kenneth M. Anderson, 2001 14

More on Principles

• Reduce complexity by separating concerns
– Separate components should address separate concerns; increase

comprehensibility and flexibility

• Reflect stable context structures
– Architectural design attempts to bridge requirements to technical

options
• Therefore the architecture must have a sound relationship to a

system’s context; which we identified during analysis; therefore our
architecture should reflect the structures identified in analysis (UI
Example, page 191)

• Reuse existing components
– From analysis and from architectural patterns

April 17, 2001 © Kenneth M. Anderson, 2001 15

The Component Step

• Inputs
– Criteria (and results of analysis)

• Steps (page 192)
– Explore architectural patterns
– Define subsystems
– Identify components (create class diagram)
– Specify complex components

• Outputs
– Component Specification

April 17, 2001 © Kenneth M. Anderson, 2001 16

Step 1: Explore Architectural
Patterns

• The Layered Architecture Pattern
– Pages 193 and 194

• The Generic Architecture Pattern
– Page 196

• The Client-Server Pattern
– Page 197



April 17, 2001 © Kenneth M. Anderson, 2001 17

Step 2: Define Subsystems

• Large systems need to be divided into subsystems
– Think of it as partitioning the interface, model, and

functions of the whole system into logical parts

– Page 198 and 199

• Clients and Servers can be thought of as
subsystems; different partitions of interface, model,
and function lead to different types of client-server
systems (See page 200 and 201)

April 17, 2001 © Kenneth M. Anderson, 2001 18

Step 3: Identify Components

• Figure 10.11 lists design concerns for identifying
components that deal with issues of model, function, and
interface
– Model components are tied to the problem domain; if an event

occurs in the problem domain, some model component must
change state

– Function components provide the functionality required by the
model

– Interface components facilitate interactions between actors and the
system

• Consider using existing components and/or extending the
technical platform with new components (e.g. creating a
new widget)

April 17, 2001 © Kenneth M. Anderson, 2001 19

Step 4: Specify Relevant
Components

• Mathiassen’s recommendations are not too
useful!
– See figures 10.13 and 10.14 on page 206

• In general, the discussion from section 7.3
applies
– again we are identifying components, not

specifying them
• we will specify details in low-level design

April 17, 2001 © Kenneth M. Anderson, 2001 20

The Process Step

• Purpose
– To define the physical structuring of a system

• Definitions
– Process Architecture: A system-execution structure composed of

interdependent processes

– Processor: A piece of equipment that can execute a program

– Program Component: A physical module of program code

– Active Object: An object that has been assigned a process

• Principles
– Aim at an architecture without bottlenecks

– Distribute components on processors

– Coordinate resource sharing with active objects



April 17, 2001 © Kenneth M. Anderson, 2001 21

Background

• The process architecture brings us closer to the
system’s physical level
– Our goal is to produce a deployment diagram that

shows how our system’s components will be distributed
across the processors in the environment

• The process step is structured according to two
levels of abstraction
– overall distribution of components

– processes that facilitate collaboration among objects

April 17, 2001 © Kenneth M. Anderson, 2001 22

The Process Step

• Inputs
– Class Diagram and Component Specs.

• Steps (page 212)
– Explore Distribution Patterns
– Distribute Program Components
– Identify Shared Resources
– Explore coordination patterns
– Select Coordination Mechanisms

• Output
– Deployment Diagram (page 210)

April 17, 2001 © Kenneth M. Anderson, 2001 23

Step 1: Explore Distribution
Patterns

• Mathiassen presents three patterns related to
client-server systems
– Centralized (page 216)

– Distributed (page 217)

– Decentralized (page 219)

April 17, 2001 © Kenneth M. Anderson, 2001 24

Step 2: Distribute Program
Components

• Begins with output of the component step, with the goal
being to distribute these components across all processors
– Can be delayed until the component architecture and the

components themselves are designed, or earlier when it has a
chance to influence the components used

• Sub-steps
– Step 1: Separate program components and active objects

• Components with some active operations need to be split

– Step 2: Determine Available Processors
– Step 3: Distribute program components and active objects

• Layered systems may all be on one processor
• Client-Server systems will, of course, be distributed



April 17, 2001 © Kenneth M. Anderson, 2001 25

Step 3: Identify Shared
Resources

• Purpose
– To identify bottlenecks which can arise from extensive or shared use of

resources
• Processor

– Examine fine grain object interactions (Figure 11.8)

• Program-Component Sharing
• External-Device Sharing

• To find bottleneck, ask
– Do the active objects assigned to a processor exceed it capacity?
– What is the accessibility, capacity, and load of the shared external

devices?
– Where is model information stored? How is it accessed?
– What is the capacity and load of the system’s (architectural) connections?

• In response, you must either change design or modify hardware

April 17, 2001 © Kenneth M. Anderson, 2001 26

Step 4: Explore Coordination
Patterns

• Two primary mechanisms
– synchronization
– data exchange

• Patterns
– dedicated monitor
– centralized task dispatcher
– subscription to state changes
– asynchronous data exchange

April 17, 2001 © Kenneth M. Anderson, 2001 27

Step 5: Select Coordination
Mechanisms

• For each shared resource, consider the use
of an active object to coordinate access to
the resource


