
Lecture 24: OO Design Methods:
Mathiassen, Part 4

Kenneth M. Anderson

Object-Oriented Analysis and Design

CSCI 6448 - Spring Semester, 2001

April 12, 2001 © Kenneth M. Anderson, 2001 2

Goals of Lecture

• Continue presenting Mathiassen’s method
for application domain analysis

• Activities
– Usage (Last Lecture)

– Functions (This Lecture)

– Interfaces (This Lecture)

April 12, 2001 © Kenneth M. Anderson, 2001 3

The Function Activity

• Purpose: To determine a system’s information processing
capabilities

• Definition: A function is a facility for making a model
useful for actors
– Mathiassen is referring to the model developed by the problem

domain analysis (Mathiassen lectures, part 1 and 2)

• Principles
– Identify all functions

– Specify only complex functions

– Check consistency with use cases and the model

April 12, 2001 © Kenneth M. Anderson, 2001 4

The Function Activity

• Inputs
– System Definition
– Use Cases

• Steps (Page 139)
– Find Functions
– Specify complex functions
– Evaluate Critically

• Output
– Function list and specifications



April 12, 2001 © Kenneth M. Anderson, 2001 5

Rationale behind Activities

• In the function activity, we ask
– What is the system going to do?

• In the usage activity, we asked
– How is the system to be used?

• Since its hard to separate “what” and “how,”
the function and usage activities are closely
linked

April 12, 2001 © Kenneth M. Anderson, 2001 6

More on Functions

• Traditionally, a function is a computation that
transforms input data into output data

• It is difficult, however, to characterize complete
systems from a purely functional point of view
– They are useful, however, in that they express the intent

of a system

– from that point of view, identifying functions that a
system must perform is helping to capture and create a
system’s requirements

April 12, 2001 © Kenneth M. Anderson, 2001 7

Types of Functions

• Mathiassen identifies four types of functions (page 138-140)
– Update

• A function activated by a problem domain event and results in a change in a
model’s state

– Signal
• A function activated by a change in a model’s state and results in a reaction

(such as displaying information to an actor)

– Read
• A function activated by a need for information by an actor’s action step and

results in displaying information from a model

– Compute
• A function activated by a need for information by an actor’s action step and

consists of a computation that may use information supplied by an actor or
model and whose result is then displayed to an actor

April 12, 2001 © Kenneth M. Anderson, 2001 8

Types, continued

• Note: a specific function may not be “pure”
– that is you might not be able to create functions

that are purely “update” functions or purely
“read” functions

• However, having four types of functions
helps us perform application domain
analysis, since it tells us “what to look for”



April 12, 2001 © Kenneth M. Anderson, 2001 9

Goals of the Function Activity

• Produce a list of functions that are complete and
consistent with the use cases and system model
– Functions must support use cases

– And all parts of the (problem domain) model should be
used by some function

• This involves determining if each class and event from the
problem domain is being used by some function

• If not, then the unused classes and events are modeling
information that the system ultimately does not use

April 12, 2001 © Kenneth M. Anderson, 2001 10

Step 1: Find Functions

• Two concerns
– Where do the system’s function requirements come

from?
• Classes give rise to read and update functions

• Events give rise to update functions

• Use cases give rise to all four types

– How detailed should the function descriptions be?
• Must provide an overview of the system’s functionality

• Must be able to serve as a basis of agreement between users
and developers

April 12, 2001 © Kenneth M. Anderson, 2001 11

Step 1, continued

• To find functions, ask questions
– See figures 7.2, 7.3, 7.4, and 7.5 on pages 142-144

• In general,
– Update functions are connected to events, because events must be

recorded by the system

– Read events are related to classes; the fact that classes capture
information implies a need to read that information at a later point

– Compute functions are needed because often reading information
from a model is not enough

– Signal functions are related to critical states of a system; states
which require a reaction by an actor or system

April 12, 2001 © Kenneth M. Anderson, 2001 12

Step 2: Describing Functions

• Most functions should not be described during
application domain analysis
– we should be striving for simple functions

– only identified!

• If a complex function is identified, however, it is
useful to provide additional information on it
– via a mathematical expression, algorithm (figure 7.7),

or further functional partitioning (figure 7.8)



April 12, 2001 © Kenneth M. Anderson, 2001 13

Step 3: Evaluate Systematically

• Three methods
– Users can review list

– Review functions using questions from figures
7.2, 7.3, 7.4, and 7.5

– Compare list with use cases and system model

• Output: A function list
– See figure 7.6 on page 145

April 12, 2001 © Kenneth M. Anderson, 2001 14

The Interface Activity

• Purpose: Determine a system’s interfaces
• Concepts

– Interface: Facilities that make a system’s model and
functions available to actors

– User Interface: An interface to users
– System Interface: An interface to other systems

• Principles
– Tailor usability to the application domain
– Experiment and iterate
– Identify all interface elements

April 12, 2001 © Kenneth M. Anderson, 2001 15

The Interface Activity, continued

• Results
– A user interface including dialog styles,

presentation forms, a complete list of user-
interface elements, selected window diagrams,
and a navigation diagram

– A system interface including class diagrams for
external devices and protocols of interaction
with other systems

April 12, 2001 © Kenneth M. Anderson, 2001 16

The Interface Activity, continued

• Inputs
– Function list
– Class diagrams
– Use Cases

• Steps (see page 153)
– Explore Patterns
– Determine Interface Elements (for both UI and System)
– Describe Interface Elements (for both UI and System)
– Evaluate Interface Elements (for both UI and System)

• Output
– Description of Interfaces



April 12, 2001 © Kenneth M. Anderson, 2001 17

Step 1: Explore UI Patterns

• Menu Selection Pattern
– Figure 8.3 on page 154

• Form fill-in Pattern
– Figure 8.4 on page 154

• Command Language Pattern
– Figure 8.5 on page 155

• Direct Manipulation Pattern
– Figure 8.6 on page 156

• For more details, take Tammy’s UI class!

April 12, 2001 © Kenneth M. Anderson, 2001 18

Step 2: Determine UI Elements

• First, (according to Mathiassen), you must
consider the presentation of each class and
object of the problem domain
– e.g. how should a customer, valve, document,

order, etc. be represented in the (user interface
of the) system?

– See figure 8.7 on page 156 and the example
discussed on pages 156-157

April 12, 2001 © Kenneth M. Anderson, 2001 19

Step 2: Determine UI Elements

• Second, examine the interactions defined by
use cases and
– create sequence diagrams in which the objects

are elements of the user interface (not objects of
the problem domain)

– See figure 8.8 on page 157

April 12, 2001 © Kenneth M. Anderson, 2001 20

Step 3: Describe UI Elements

• It is important to specify all elements
– but not to specify unnecessary detail

• On pages 161 to 163, Mathiassen reviews a
number of UI design heuristics
– Window diagrams for navigation concerns
– Form guidelines
– Heuristics for data display and window design

• UI Design is out-of-scope for this class
– Again, take Tammy’s UI Class for more information!



April 12, 2001 © Kenneth M. Anderson, 2001 21

Step 4: Explore System Interface
Patterns

• Need to answer the following two questions
– What data should the system send to other systems?

– What data should the system receive from other
systems?

• Patterns can help; Mathiassen presents two
– Read External Device (Figure 8.17 on page 165)

– Interaction Protocol
• More generally “Design an API” (Application Program

Interface)

April 12, 2001 © Kenneth M. Anderson, 2001 22

Step 5: Describe System
Interface Facilities

• Mathiassen does not provide much direction
in this section
– He builds off of his two patterns

• “Read External Device” patterns are described using
class diagrams

• Interaction Protocols can be further described using
State diagrams

– In general, you can use any of the diagrams
from UML to describe system interfaces

April 12, 2001 © Kenneth M. Anderson, 2001 23

Step 6: Evaluate the Interface

• Evaluation should focus on
– The decomposition of the interface into a

number of elements
• Emphasizes navigation and whether our list of

elements is complete; use use cases to assess

– The design of individual interface elements
• Emphasizes use of each element

• Requires prototypes

April 12, 2001 © Kenneth M. Anderson, 2001 24

Evaluating the Interface

• User Interface
– Careful use of prototypes is required

– Process outlined in Chapter 2
• planning, development, preparation, test, summary

• Standard Usability techniques apply (Tammy’s UI class!)

• System Interface
– Review design of API, have potential users review it

also

– Perform experiments, e.g. does the API scale?


