
Lecture 23: OO Design Methods:
Mathiassen, Part 3

Kenneth M. Anderson

Object-Oriented Analysis and Design

CSCI 6448 - Spring Semester, 2001

April 10, 2001 © Kenneth M. Anderson, 2001 2

Goals of Lecture

• Introduce Mathiassen’s method for
application domain analysis

• Activities
– Usage (Develop Use Cases)

– Functions (Develop functional capabilities)

– Interfaces (Develop user/system interface)

April 10, 2001 © Kenneth M. Anderson, 2001 3

Application Domain Analysis

• How will the target system be used?
– Goal is to identify the requirements for a

system’s functions and interfaces

• Application Domain analysis interacts with
with problem domain analysis
– What is the target domain?

– Helps to define vocabulary that can be used
throughout system development

April 10, 2001 © Kenneth M. Anderson, 2001 4

Order of Analysis

• Mathiassen reveals that you can start with
either application domain or problem
domain analysis
– Strategic Trade-off

• Application Domain => focus on user’s work
• Problem Domain => focus on “business logic”

– Starting with App. Domain is easier but starting
with problem domain yields a better
understanding of domain objects



April 10, 2001 © Kenneth M. Anderson, 2001 5

Two Principles for Application
Domain Analysis

• Determine the application domain with use
cases
– Use cases focus on the interaction between

users and the target system

• Collaborate with users
– Participatory design is required to get

application domain analysis right

April 10, 2001 © Kenneth M. Anderson, 2001 6

Usage Activity

• Derive actors and use cases for system
– Actor: An abstraction of users or other systems that

interact with the target system

– Use case: A pattern for interaction between the system
and actors in the application domain

• Steps (See page 120)
– Find actors and use cases

– Evaluate systematically

– Explore patterns

April 10, 2001 © Kenneth M. Anderson, 2001 7

Multiple Facets to Use Case
Development

• It demands cooperation between users and
developers:
– users

• formulate needs and contribute insights

– developers
• formulate use cases and contribute technical knowledge

• Determining Use Cases is an analytical as well as
a creative activity
– Use cases originate from needs and conditions in the

application domain, but a use case itself is an
expression of a solution (requiring creativity)

April 10, 2001 © Kenneth M. Anderson, 2001 8

Multiple Facets, continued

• Creating use cases is a descriptive and
experimental activity
– User collaboration is key

• Mathiassen recommends presenting use cases to users via
prototypes; this will help to refine your understanding of
particular use cases

• Use cases define both the target system and its
application domain
– Changes to a company’s information systems affect the

company’s organization and way of working



April 10, 2001 © Kenneth M. Anderson, 2001 9

Actor Tables

• Actor tables show the interaction between
actors and use cases
– See page 121

• Mathiassen claims that an actor table takes
up less space (but shows the same
information as) a use case diagram

April 10, 2001 © Kenneth M. Anderson, 2001 10

Usage Activity: Step 1

• Find Actors and Use Cases
– Who will use the system?
– How will it be used?

• Identify Actors
– To identify actors, you must determine the division of

labor and the task-related roles in the target system’s
context

– The criterion for determining actors is the dissimilarity
of roles, as expressed by the use cases in which actors
are involved

April 10, 2001 © Kenneth M. Anderson, 2001 11

Finding Actors and Use Cases

• Describing Actors
– Mathiassen describes actors using an actor

specification (see page 126)

– These consist of
• a name

• a goal (describes Actor’s role)

• characteristics (important aspects)

• examples (clarify characteristics)

April 10, 2001 © Kenneth M. Anderson, 2001 12

Find Actors and Use Cases

• Identify Use Cases
– Use cases are defined based on a specific

actor’s viewpoint (what we called the primary
actor earlier in the semester)

• Finding Use Cases
– Produce a list of potential use cases by

examining application domain tasks



April 10, 2001 © Kenneth M. Anderson, 2001 13

Find Actors and Use Cases

• Describe Use Cases
– Use cases can be described using state charts or textual

descriptions
• See page 127 and 128

– State charts are good for defining an overview of the
dynamic process and the logic of a use case, but it
omits many details

– Text descriptions conveys overview of usage details,
e.g. the interaction, but makes it difficult to specify
logic (think main success scenario and extensions)

April 10, 2001 © Kenneth M. Anderson, 2001 14

Use Case and Actor Structures

• The fundamental structure between actors
and use cases is participation

• Use case can be logically grouped
– See page 129

April 10, 2001 © Kenneth M. Anderson, 2001 15

Explore Patterns

• The Procedural Pattern
– A basic sequence that ensures that business

rules are followed
– See page 130

• The Material Pattern
– Characterized by actor being in one general

state, where each action or sequence of actions
eventually end back at the general state

– See page 131 for text editor example

April 10, 2001 © Kenneth M. Anderson, 2001 16

Evaluate Systematically:
Three Methods

– Carefully review actor and use case descriptions to find
mistakes and inconsistencies

• Each use case should be simple and constitute a coherent
whole

• Descriptions should promote understanding and overview
• Use cases need to be described in enough detail to enable

identification of functions and interface elements

– Test use cases (with user) to see if they work in practice;
use prototypes

– Evaluate the social changes in the application domain
caused by the system; see page 132


