
Lecture 21: OO Design Methods

Object-Oriented Analysis and Design

CSCI 6448 - Spring 2001

Kenneth M. Anderson

April 3, 2001 © Kenneth M. Anderson, 2001 2

Software Life Cycles

• A software life cycle governs the
development of a software product

• Many life cycles exist including those that
facilitate object-oriented analysis and
design

April 3, 2001 © Kenneth M. Anderson, 2001 3

Life cycle ≠ Notation

• This class has discussed the Unified
Modeling Language, which is a notation

• A notation provides symbols to record
requirements and design decisions

• Thus, the UML is not a software life cycle

• However, it can be used by many different
life cycles to produce life cycle artifacts

April 3, 2001 © Kenneth M. Anderson, 2001 4

Survey of OOA&D Methods

• Generalization
– Taken from “SE: A Practitioner’s approach, 4th ed.” by Roger S.

Pressman, McGraw-Hill, 1997

• The Booch Method
• The Coad and Yourdon Method
• The Jacobson Method
• The Rambaugh Method
• The Wirfs-Brock Method
• The Unified Software Process



April 3, 2001 © Kenneth M. Anderson, 2001 5

OO Methods In general...

• Obtain customer requirements for the OO System
– Identify scenarios or use cases

– Build a requirements model

• Select classes and objects using basic requirements

• Identify attributes and operations for each object

• Define structures and hierarchies that organize classes

• Build an object-relationship model

• Build an object-behavior model

• Review the OO analysis model against use cases

April 3, 2001 © Kenneth M. Anderson, 2001 6

Detailed comparisons

• What follows is a barebones description of
each method, detailed comparisons can be
found in:
– Graham, I. Object-Oriented Methods, Addison-

Wesley, Third Edition, 2001
– For related links:

<http://www.ultranet.com/~lebrun/Steven/
Computer/Programming/
Object-Oriented.html>

April 3, 2001 © Kenneth M. Anderson, 2001 7

Background on OO Methods

• An OO Method should cover and include
– requirements and business process modeling
– a lightweight, customizable process framework
– project management
– component architecture
– system specification

• use cases, UML, architecture, etc.

– component design and decomposition
– testing throughout the life cycle
– QA and configuration management
– Process Patterns

April 3, 2001 © Kenneth M. Anderson, 2001 8

Process Patterns

• A pattern in the form of
– Whenever your goal is A

and your current situation is B
then try doing C

• (but be aware of prerequisite P, risk R, side-effect S,
time-scale T, etc.)



April 3, 2001 © Kenneth M. Anderson, 2001 9

The Booch Method

• Identify classes and objects
– Propose candidate objects
– Conduct behavior analysis
– Identify relevant scenarios
– Define attributes and operations for each class

• Identify the semantics of classes and objects
– Select scenarios and analyze
– Assign responsibility to achieve desired behavior
– Partition responsibilities to balance behavior
– Select an object and enumerate its roles and responsibilities
– Define operations to satisfy the responsibilities

April 3, 2001 © Kenneth M. Anderson, 2001 10

Booch, continued

• Identify relationships among classes and objects
– Define dependencies that exist between objects

– Describe the role of each participating object

– Validate by walking through scenarios

• Conduct a series of refinements
– Produce appropriate diagrams for the work conducted above

– Define class hierarchies as appropriate

– Perform clustering based on class commonality

• Implement classes and objects
– In analysis and design, this means specify everything!

April 3, 2001 © Kenneth M. Anderson, 2001 11

Coad and Yourdon Method

• Often viewed as the easiest method to learn

• Steps
– Identify objects using “what to look for” criteria

– Define a generalization-specification structure

– Define a whole-part structure

– Identify subjects (subsystem components)

– Define attributes

– Define services

• Coad, P. and E. Yourdon, Object-Oriented Analysis, 2nd
ed., Prentice-Hall, 1991

April 3, 2001 © Kenneth M. Anderson, 2001 12

The Jacobson Method

• Object-Oriented Software Engineering
– Primarily distinguished by the use-case

– Simplified model of Objectory
• Objectory evolved into the Rational Unified Software

Development Process

– For more information on this Objectory precursor, see
• Jacobson, I., Object-Oriented Software Engineering, Addison-

Wesley, 1992.



April 3, 2001 © Kenneth M. Anderson, 2001 13

Jacobson, continued

• Identify the users of the system and their overall
responsibilities

• Build a requirements model
– Define the actors and their responsibilities

– Identify use cases for each actor

– Prepare initial view of system objects and relationships

– Review model using use cases as scenarios to determine validity

• Continued on next slide

April 3, 2001 © Kenneth M. Anderson, 2001 14

Jacobson, continued

• Build analysis model
– Identify interface objects using actor-interaction information

– Create structural views of interface objects

– Represent object behavior

– Isolate subsystems and models for each

– Review the model using use cases as scenarios to determine
validity

April 3, 2001 © Kenneth M. Anderson, 2001 15

The Rambaugh Method

• Object Modeling Technique (OMT)
– Rambaugh, J. et al., Object-Oriented Modeling and Design,

Prentice-Hall, 1991

• Analysis activity creates three models
– Object model

• Objects, classes, hierarchies, and relationships

– Dynamic model
• object and system behavior

– Functional model
• High-level Data-Flow Diagram

April 3, 2001 © Kenneth M. Anderson, 2001 16

Rambaugh, continued

• Develop a statement of scope for the problem
• Build an object model

– Identify classes that are relevant for the problem
– Define attributes and associations
– Define object links
– Organize object classes using inheritance

• Develop a dynamic model
– Prepare scenarios
– Define events and develop an event trace for each scenario
– Construct an event flow diagram and a state diagram
– Review behavior for consistency and completeness



April 3, 2001 © Kenneth M. Anderson, 2001 17

Rambaugh, continued

• Construct a functional model for the system
– Identify inputs and outputs

– Use data flow diagrams to represent flow transformations

– Develop a processing specification for each process in the DFD

– Specify constraints and optimization criteria

• Iterate!

April 3, 2001 © Kenneth M. Anderson, 2001 18

The Wirfs-Brock Method

• Wirfs-Brock, R., B. Wilkerson, and L. Weiner, Designing
Object-Oriented Software, Prentice-Hall, 1990
– Evaluate the customer specification

– Use a grammatical parse to extract candidate classes

– Group classes in an attempt to identify superclasses

– Define and assign responsibilities for each class

– Identify relationships between classes

– Define collaboration between classes

– Build hierarchical representations of classes

– Construct a collaboration graph for the system

April 3, 2001 © Kenneth M. Anderson, 2001 19

Rational Unified Process:
Overview

Transition

Taken from
UML Distilled,
Chapter 2

Construction

1 2 3
ElaborationInception

See also, page 482-
485 of Graham’s
OO Methods book

April 3, 2001 © Kenneth M. Anderson, 2001 20

Inception

• High-level planning for the project

• Determine the project’s scope

• If necessary
– Determine business case for the project

• Estimate cost and projected revenue



April 3, 2001 © Kenneth M. Anderson, 2001 21

Elaboration

• Develop requirements and initial design

• Develop Plan for Construction phase

• Risk-driven approach
– Requirements Risks

– Technological Risks

– Skills Risks

– Political Risks

April 3, 2001 © Kenneth M. Anderson, 2001 22

Requirements Risks

• Is the project technically feasible?

• Is the budget sufficient?

• Is the timeline sufficient?

• Has the user really specified the desired
system?

• Do the developers understand the domain
well enough?

April 3, 2001 © Kenneth M. Anderson, 2001 23

Dealing with Requirements Risks

• Construct models to record Domain and/or
Design knowledge
– Domain model (vocabulary)

– Use Cases (discussed next week)

– Design model
• Class diagrams

• Activity diagrams

• Prototype construction

April 3, 2001 © Kenneth M. Anderson, 2001 24

Dealing with Requirements Risks,
continued.

• Begin by learning about the domain
– Record and define jargon
– Talk with domain experts

• Oftentimes end-users!

• Next construct Use cases
– What are the required external functions of the

system?
– Iterative process; Use Cases can be added as

they are discovered



April 3, 2001 © Kenneth M. Anderson, 2001 25

Dealing with Requirements Risks,
continued.

• Finally, construct Design model
– Class diagrams identify key domain concepts

and their high-level relationships
– Activity diagrams highlight the domain’s work

practices
• A major task here is identifying parallelism that can

be exploited later

• Be sure to consolidate iterations into a final
consistent model

April 3, 2001 © Kenneth M. Anderson, 2001 26

Dealing with Requirements Risks,
continued.

• Build prototypes
– Used only to help understand requirements

– Throw them all out!
• Do not be tied to an implementation too early

• Make use of rapid prototyping tools
– 4th Generation Programming Languages

– Scripting and/or Interpreted environments

– UI Builders

• Be prepared to educate the client as to the purpose
of the prototype

April 3, 2001 © Kenneth M. Anderson, 2001 27

Technology Risks

• Are you tied to a particular technology?

• Do you “own” that technology?

• Do you understand how different
technologies interact?

• Techniques
– Prototypes!

– Class diagrams, package diagrams

April 3, 2001 © Kenneth M. Anderson, 2001 28

Skill Risks

• Do the members of the project team have
the necessary skills and background to
tackle the project?

• If not
– Training, Consulting, Mentoring and Hiring

new people are available options!



April 3, 2001 © Kenneth M. Anderson, 2001 29

Political Risks

• How well does the proposed project mesh
with corporate culture?
– Consider the attempt to use Lotus Notes at

Arthur Anderson
• Lotus Notes attempts to promote collaboration
• Arthur Anderson consultants compete with each

other!

– Consider e-mail: any employee can ignore the
org chart and mail the CEO!

April 3, 2001 © Kenneth M. Anderson, 2001 30

Political Risks, continued

• Will the project directly compete with
another business unit?

• Will it be at odds with some higher level
manager’s business plan?

• Any of these can kill a project…

• Examples from students?

April 3, 2001 © Kenneth M. Anderson, 2001 31

Reference

• Lotus Notes vs. Arthur Anderson
– Orlikowski, W. J. (1992). "Learning from

Notes: Organizational Issues in Groupware
Implementation". Proceedings of ACM
CSCW'92 Conference on Computer-Supported
Cooperative Work: 362-369.

• If you are interested you can borrow my
copy of the CSCW’92 proceedings to make
a copy

April 3, 2001 © Kenneth M. Anderson, 2001 32

Ending Elaboration

• Baseline architecture Constructed
– List of Use cases (with estimates)
– Domain Model
– Technology Platform

• AND
– Risks identified
– Plan constructed

• Use cases assigned to iterations



April 3, 2001 © Kenneth M. Anderson, 2001 33

Construction

• Each iteration produces a software product
that implements the assigned Use cases
– Additional analysis and design may be

necessary as the implementation details get
addressed for the first time

• Extensive testing should be performed and
the product should be released to (some
subset of) the client for early feedback

April 3, 2001 © Kenneth M. Anderson, 2001 34

Transition

• Final phase before release 1.0

• Optimizations can now be performed
– Optimizing too early may result in the wrong

part of the system being optimized

– Largest boosts in performance come from
replacing non-scalable algorithms or mitigating
bottlenecks

April 3, 2001 © Kenneth M. Anderson, 2001 35

Missing Phase?

• What happened to Operation and
Maintenance?
– The construction phase is iterative. Each

iteration produces a product that can be
externally delivered. Feedback from that
product can drive the next iteration

• Thus, maintenance would be an iteration
occurring after transition

April 3, 2001 © Kenneth M. Anderson, 2001 36

Maintenance

Transition

UML Distilled,
Chapter 2

Construction

1 2 3
ElaborationInception


