
Lecture 20: OO Design Methods:
Mathiassen, Part 2

Kenneth M. Anderson

Object-Oriented Analysis and Design

CSCI 6448 - Spring Semester, 2001

March 22, 2001 © Kenneth M. Anderson, 2001 2

Goals of Lecture

• Continue our look at Mathiassen’s method
for problem domain analysis

• Review of Steps
– Class Activity (last lecture)

– Structure Activity (last lecture)

– Behavior Activity (this lecture)

March 22, 2001 © Kenneth M. Anderson, 2001 3

Motivation

• In problem domain analysis, we need to
understand what happens in a problem
domain over time

• Our system’s fundamental purpose
(according to Mathiassen) is to register,
store, and produce information about
problem domain events

March 22, 2001 © Kenneth M. Anderson, 2001 4

The Behavior Activity

• The behavior activity extends
– the class definitions of the class and structure activities

– with information about attributes and (what Mathiassen
calls) the behavioral pattern for each class

• The behavioral pattern allows us to specify the
possible event traces for an object; we need to do
this, since some problem domains impose
limitations on the order of events



March 22, 2001 © Kenneth M. Anderson, 2001 5

Definitions

• Event Trace: A sequence of events
involving a specific object

• Behavioral Pattern: A description of
possible event traces for all objects in a
class
– e.g. a state diagram!

March 22, 2001 © Kenneth M. Anderson, 2001 6

Example

Customer

account opened
(date)

Open

account closed
(date)

amount deposited
(date, amount)

amount withdrawn
(date, amount)

This behavioral pattern asserts that a Customer object is created
when a real customer opens an account in the bank. The customer
can then deposit and withdraw money. The customer object is
deleted when the account is closed.

March 22, 2001 © Kenneth M. Anderson, 2001 7

Interesting Take on Attributes

• Mathiassen has an interesting take on
determining class attributes
– In particular, attributes are derived for a class

by examining its behavioral pattern!

– Attributes are the data that a system must store;
use the events to which an object responds to
determine the data it must store

March 22, 2001 © Kenneth M. Anderson, 2001 8

The Behavior Activity, in detail
(page 92)

• Inputs
– Event Table and Class Diagram
– Design Patterns

• Steps
– Create behavioral pattern for each class
– Consider changes to class diagram; repeat
– When done, assign attributes for each class

• Outputs
– Modified class diagram and (possibly) event table
– Behavioral Patterns with attributes



March 22, 2001 © Kenneth M. Anderson, 2001 9

Creating Behavioral Patterns

• Start by defining the first and last event in an
object’s life
– If you do this for each object, you will end with a set of

object creation events and object “disappearance”
events

– Not “created” but “account opened”

– Why “disappearance”, the system may still need to
examine an object after it has “died” - so an object is
not automatically deleted when its last event occurs

March 22, 2001 © Kenneth M. Anderson, 2001 10

Creating Behavioral Patterns

• Continue by examining the event sequences for an object
– Is the overall form structured or unstructured

• structured is indicated by a sequence of events that occur in a
specified order

• unstructured is indicated by a collection of intermediate events that
can occur in any order any number of times

– Which events occur together in a sequence

– Are there any alternative events?

– Can a given event occur more than once?

• Use the answers to these questions to create the associated
state diagrams

March 22, 2001 © Kenneth M. Anderson, 2001 11

Evaluation Criteria

• The behavioral pattern should be sufficiently
precise to describe all legal, and thus all illegal,
event traces

• The behavioral pattern should provide an
overview and thus be as simple as possible

• These criteria may be conflicting!
– You can avoid this conflict by describing “typical”

behavior in the “main” diagram and create additional
diagrams to specify “specialized” behavior

March 22, 2001 © Kenneth M. Anderson, 2001 12

Example, Revisited

Customer

account opened
(date)

Open

account closed
(date)

amount deposited
(date, amount)

amount withdrawn
(date, amount)

What happens if the same customer re-opens an account at a later
date? In the current state diagram, we imply that we will have to
create a new customer object and thus potentially store two customer
objects for the same “real world” customer. This implies the need for
a new state “closed”: see page 98 of Mathiassen for details



March 22, 2001 © Kenneth M. Anderson, 2001 13

Updating your Event Table

• As you create behavioral patterns, you will
typically learn more about your events
– in particular, how often they might occur

– be sure to update your event table
• use a “*” to indicate an event that can occur zero or more times;

a “+” indicates an event that can occur zero or one time

• Note: I do not like this notation since it does not correspond to
“standard” regular expression syntax; normally a “?” is used to
indicate “zero or one”

• Use whatever you like, just be sure to document your symbols!

March 22, 2001 © Kenneth M. Anderson, 2001 14

Inheritance of Behavioral
Patterns

• The behavioral pattern of a super class is
inherited by all of its subclasses
– An individual subclass will typically expand the

inherited behavior by adding new states and
events unique to that class

– Note: multiple inheritance can cause problems
if two superclasses specify incompatible
behaviors; we are safe with respect to events,
however, since event names are unique

March 22, 2001 © Kenneth M. Anderson, 2001 15

Explore Patterns

• Three Patterns arise with respect to
behaviors
– The Stepwise Relation Pattern

– The Stepwise Role Pattern

– The Composite Pattern

March 22, 2001 © Kenneth M. Anderson, 2001 16

Stepwise Relation Pattern

• Used to model situations where a problem-domain
object is related to the elements of a hierarchy in a
stepwise fashion (page 103)

Semester

StudentClass

Group

*
*

*
*

*
Assigning

assigned to X

foo

assigned
to X

Semester or Class or Group

Student



March 22, 2001 © Kenneth M. Anderson, 2001 17

Stepwise Role Pattern

• Used to describe how the behavior of a whole
changes as its parts become active

• It is stepwise since typically the final event for one
part, is typically the first event for a subsequent
part

• See page 104 for details

March 22, 2001 © Kenneth M. Anderson, 2001 18

The Composite Pattern

• Used to describe the creation (and
destruction) of a hierarchy whose detailed
structure is unknown at design time

• Behavioral patterns are recursive
– top level behavior requires some behavior

beneath it

• See page 105

March 22, 2001 © Kenneth M. Anderson, 2001 19

Changing the Class Diagram

• Aggregation and Association
– If two or more objects have common events, consider

adding an aggregation or association structure between
them

• Flip Side
– If two classes are related by an aggregation or

association, at least one common event should be
shared between them

– e.g. the event that establishes or removes the link
between the objects that participate in this structural
relationship

March 22, 2001 © Kenneth M. Anderson, 2001 20

Changing the Class Diagram

• Generalization
– If the same event is tied to two classes, consider

whether one class is a generalization of the
other

– If two classes, share many events, consider
whether they are different specializations of a
third class



March 22, 2001 © Kenneth M. Anderson, 2001 21

Changing the Class Diagram

• Adding New Classes
– In some cases, new classes will be suggested by

“ambiguous” behavioral patterns

– The behavioral pattern of the new class,
removes the ambiguity by sharing the events
and implying limitations to the legal event
sequences

– (See example page 109)

March 22, 2001 © Kenneth M. Anderson, 2001 22

Describe Attributes

• Three classes of attributes
– information connected to events that must be

recorded by the system
• date and amount of bank withdrawal

– information related to the object as a whole
• customer name and address
• Note: treat attributes as atomic in analysis

– e.g. customer name, not customer first and last name

– attributes that can be derived from other
attributes

March 22, 2001 © Kenneth M. Anderson, 2001 23

Evaluation Criteria

• What are the general characteristics of the
class?

• How is the class described in the problem
domain?

• What basic data must be captured about
objects from this class?

• What results from an event trace must be
captured?

March 22, 2001 © Kenneth M. Anderson, 2001 24

Another Interesting Take

• Mathiassen asserts that an attribute should only be
included in your description if it is used by at least
one system function

• However, system functions are not defined in
problem domain analysis

• So, you may end problem domain analysis with
attributes that will not make it through the next
phase of Mathiassen’s OO Design Method


