
Lecture 19: OO Design Methods:
Mathiassen, Part 1

Kenneth M. Anderson

Object-Oriented Analysis and Design

CSCI 6448 - Spring Semester, 2001

March 20, 2001 © Kenneth M. Anderson, 2001 2

Goals of Lecture

• Begin to examine the OO Analysis and
Design Method described in the Mathiassen,
et al., textbook

• In particular, we will look at their take on
problem domain analysis
– This involves classes, structure, and behavior

March 20, 2001 © Kenneth M. Anderson, 2001 3

Problem Domain Analysis

• In Mathiassen
– Begin with a class activity

• identify a candidate set of classes and events

– Followed by a structure activity
• define the structural relationships between classes

– End with a behavior activity
• specify the behavior of each class

March 20, 2001 © Kenneth M. Anderson, 2001 4

Classes

• The Mathiassen method begins problem domain analysis
using classes
– Trying to answer the question

• Which objects and events should we include in the model and which
should we leave out?

– Steps
• We abstract problem domain phenomena by seeing them as objects

and events
• We classify objects and events and select which classes and events the

system will maintain information on

• Classes are the first means to define and limit a problem
domain; e.g. Mathiassen uses classes as designations; a
means for setting our scope



March 20, 2001 © Kenneth M. Anderson, 2001 5

Classification

• Classify objects in the problem domain
– Challenges

• Formalizing Existing Concepts
– Humans may use a term, such as “course”, to refer to many

different things; we may need to disambiguate between “course”,
“seminar”, and “lab”

• Different Interpretations
– In a business context, accounting, production, and sales may all

use the term “order” to mean different things

– Approach: identify phenomena as objects, classify these
objects and the events they can produce

March 20, 2001 © Kenneth M. Anderson, 2001 6

Objects and Events

• For Mathiassen, objects are entities with identity,
state, and behavior

• Objects are characterized by events
– events are defined as “instantaneous incidents involving

one or more objects”

• Example
– Bank customer

– Possible Events: Deposit, Withdraw, Apply for Loan,
Buy Bonds, etc.

March 20, 2001 © Kenneth M. Anderson, 2001 7

More on Events

• An event is an abstraction of an activity
– We can abstract the activity of a “withdrawal” in order

to describe the behavior of a bank customer

• Activities have duration, events do not
– “loan approved”

• Events tie objects together
– A “deposit” involves a customer and an account; the

event is assigned to both objects

• Events have unique names (they live in a global
namespace)

March 20, 2001 © Kenneth M. Anderson, 2001 8

Problem Domain Analysis, cont.

• Having identified a set of objects
– We find a set of classes to model them
– Mathiassen recommends brainstorming as

many different classes as possible, at first
• you will later evaluate this list to identify the core

set of classes that will be needed to model the
system

– Mathiassen also recommends that this process
be performed with the user



March 20, 2001 © Kenneth M. Anderson, 2001 9

Generating Potential Classes

• nouns
– and noun phrases
– as given by users

• general types
– physical things
– people and roles
– organizations
– places, concepts
– descriptions
– resources
– devices
– systems

• Remember
– brainstorm

– do not (yet) evaluate

• Chose
– simple names

– that originate in the
problem domain

– indicate a single
instance

March 20, 2001 © Kenneth M. Anderson, 2001 10

Problem Domain Analysis, cont.

• Having a set of potential classes
– We now must identify events

– Start with the verbs that your users use

– Draw on general event types
• work and production, transportation, consumption, life cycle,

career and education, contracting and exchange, monitoring
and control, planning and management, decision making and
communication

– Choose event names that are simple, originate in the
problem domain and indicate a single event

March 20, 2001 © Kenneth M. Anderson, 2001 11

Beware Verb Tense

• In choosing the verb form for event names,
Mathiassen identifies three choices
– present tense, past tense, present participle

• reserve, reserved, reserving

– Potential Problems
• present tense verbs are difficult to distinguish from method

names
• past tense verbs are difficult to distinguish from the state

reached after the event has occurred
• the third form contradicts the fundamental property of an event

as being instantaneous

March 20, 2001 © Kenneth M. Anderson, 2001 12

Problem Domain Analysis, cont.

• Evaluate classes/events systematically
– General evaluation criteria

• Is the class or event within the system definition
• Is the class or event relevant for the problem domain
• «Note the similarity to the principle of domain

relevance»

– Classes and Events should concern only the
problem domain at this point, not the
application domain



March 20, 2001 © Kenneth M. Anderson, 2001 13

Evaluation Criteria for Classes

• Can you identify objects from the class?
– Is there a recognition rule?

• Does the class contain unique information?
– If the class contains information that can be derived from other

classes, then you are modeling functionality and not classes

• Does the class encompass multiple objects?
– Singleton classes are rare

• Does the class have a suitable and manageable number of
events?
– A class with few events may be too simple; too many events and it

may be better to split the class into smaller, more simple, classes

March 20, 2001 © Kenneth M. Anderson, 2001 14

Evaluation Criteria for Events

• Is the event instantaneous?
– If you want to model multiple events throughout an

activity, include start, stop, and interval events; we
want to know that an event has occurred

• Is the event atomic?
– If you have an event that can be broken down into sub-

events; include the sub-events directly and discard the
composite event

• Can the event be identified when it occurs?
– Would you be able to implement a system that can

observe the event?

March 20, 2001 © Kenneth M. Anderson, 2001 15

Assigning Events to Classes

• The class activity ends by creating an event
table that relates events to classes; see
Figure 3.1 on page 50

• Guidelines for creating the event table
– Which events is this class involved in?
– What classes are involved in this event?

• Effective for evaluating the cohesion and
coupling of your classes and events

March 20, 2001 © Kenneth M. Anderson, 2001 16

Structure Activity

• Goal
– Produce a class diagram

• Purpose
– Model abstract, general relationships between classes

and concrete, specific relationships between objects

• Benefit
– provides a coherent problem domain overview by

describing all structural relations between classes and
objects in our model



March 20, 2001 © Kenneth M. Anderson, 2001 17

Starting the structure activity

• What are the specific relations between objects in
the problem domain?
– Identify two types of object relationships

• aggregation structures
• associations

• What is the conceptual relationships between two
or more classes in the problem domain?
– Identify two types of class relationships

• generalization
• clusters (e.g. a collection of related classes)

March 20, 2001 © Kenneth M. Anderson, 2001 18

Important Point

• Class structures are static, conceptual
relationships
– they do not change, unless we somehow change

the class descriptions themselves

• Object structures are concrete, dynamic
relationships
– They can freely change at runtime without

impacting our class description

March 20, 2001 © Kenneth M. Anderson, 2001 19

Steps of the Structure Activity

• Find candidate structures

• Evaluate Patterns

• Evaluate candidate structures and select the
relevant relationships

• (See Figure 4.3 on page 72)

• Note: this process is iterative and may
require backtracking to the class activity

March 20, 2001 © Kenneth M. Anderson, 2001 20

Find Candidate Structures

• Find “is-a” relationships
– A taxi is a car…

– Remember that subclasses are mutually exclusive

• Find clusters
– A cluster is a collection of classes that helps us achieve

a problem-domain overview

– See, for example, page 75

• Find associations and aggregations between
objects; specify as class relationships



March 20, 2001 © Kenneth M. Anderson, 2001 21

More on clusters

• Clusters (denoted using a folder symbol)
enable an understanding of the problem
domain by breaking it down into sub-
domains

• Within a cluster, classes are related using
generalization and aggregation
– between clusters, classes are related using

associations

March 20, 2001 © Kenneth M. Anderson, 2001 22

Identifying Generalizations

• Approach 1
– Examine every pair of selected classes and determine if a

generalization structure exists
• if so, the superclass’s events must be a subset of the subclasses’s

events

• Approach 2
– Determine if a relevant generalization exists for pairs of selected

classes
• this may introduce new classes

• Approach 3
– examine each class and attempt to define a relevant generalization

or specialization; may also add new classes

March 20, 2001 © Kenneth M. Anderson, 2001 23

Identify Aggregations

• Approach One
– Examine each pair of classes to see if the objects of one

are decompositions of the objects of the other

• Approach Two
– Determine if it is relevant to aggregate the objects from

each pair of classes into objects from a newly created
class

• Approach Three
– Examine each class to see if new classes can be added

that represent relevant “parts” or “wholes”

March 20, 2001 © Kenneth M. Anderson, 2001 24

Types of Aggregation

• Whole-Part
– the whole is the sum of the parts; if we add or remove any part, we

change the whole fundamentally

– delete the whole; delete the parts

• Container-Content
– the whole is a container for the parts; the whole does not change

fundamentally if we add or remove parts

• Union-Member
– the whole is an organized union of members; similar to container-

content except there is a lower bound on the number of members



March 20, 2001 © Kenneth M. Anderson, 2001 25

Identify Associations/Clusters

• Add associations whenever you need to
administrate, monitor, or control relations
between objects that are not otherwise
related

• Add clusters to identify specific sub-
domains
– Note: classes cannot belong to more than one

cluster

March 20, 2001 © Kenneth M. Anderson, 2001 26

Explore Patterns

• Object Oriented Patterns are generalized
descriptions of a problem and a related
solution
– We will cover patterns, in more detail, later in

the semester

• For now, we look at four patterns
particularly concerned with structure
– Role, Relation, Hierarchy, Item-Descriptor

March 20, 2001 © Kenneth M. Anderson, 2001 27

Role Pattern

• Used to model a situation where a single person can have
multiple roles in a problem domain

• Solution: have a Person object aggregate one or more Role
objects; each Role object can be a different subclass of
Role

Person

Role 1 Role 2 Role N…

Role*

March 20, 2001 © Kenneth M. Anderson, 2001 28

Relation Pattern

• A means for relating two objects, where the relation itself
has properties
– what we called association classes earlier

• A “party” to the relation aggregates a number of Relation
objects; each Relation object is associated with some other
“party”

Party 1 Relation*

Party 2

*



March 20, 2001 © Kenneth M. Anderson, 2001 29

Hierarchy Pattern

• Used to organize elements into a series of layers

• Have each layer, aggregate instances of the layer
below it; the bottom layer is some relevant
element

Level N Level N-1* * … Level 1

*Element
March 20, 2001 © Kenneth M. Anderson, 2001 30

Item-Descriptor Pattern

• Helps to distinguish between an item and its
description
– books and copies

– each copy has its own identity; but shares
properties described by the book object

Descriptor Item*

March 20, 2001 © Kenneth M. Anderson, 2001 31

Evaluate Systematically

• Principle
– Model only the necessary structural

relationships

• Critieria
– Structures must be used correctly
– Structures must be conceptually true

• Do the structures represent the problem domain for a
future user of the system

– Structures must be simple

March 20, 2001 © Kenneth M. Anderson, 2001 32

Structures Must be Used
Correctly

• Do not mix generalization and aggregation
– “is-a” versus “has-a” and “is-part-of”

• Use aggregation to capture fundamental, definitive
relations; use associations for more fluid relations
– Can the objects exist independently of each other?

– Are the objects equally ranked?

– Can the connection from an object from the one class change to
other objects from the other class

• If you answer “yes” to two or more, use association
– otherwise use aggregation


