
Lecture 13: Interfaces and Objects

Kenneth M. Anderson

Object-Oriented Analysis and Design

CSCI 6448 - Spring Semester, 2001

February 27, 2001 © Kenneth M. Anderson, 2001 2

Goals for this Lecture

• Introduce
– Interfaces

– Objects

• Examine their associated UML Notations

February 27, 2001 © Kenneth M. Anderson, 2001 3

Interfaces

• An interface is a collection of operations
(not data) that specifies a particular service
of a class or a component
– For instance, lists, queues, stacks, and trees

typically provide an Iterator interface that
allows other classes to cycle through their
elements

February 27, 2001 © Kenneth M. Anderson, 2001 4

UML Notation

• The most simple notation for an interface is
a labeled circle

Iterator

Interface names can be grouped using
packages

Java::Collection::Iterator



February 27, 2001 © Kenneth M. Anderson, 2001 5

UML Notation

• However, a full class diagram can be used
to specify the particular operations
associated with an interface

«interface»
Iterator

init()
next()
more()

No attributes allowed!

February 27, 2001 © Kenneth M. Anderson, 2001 6

How interfaces are used

• You cannot instantiate an instance of an interface,
instead other classes (and thus their objects)
choose to implement certain interfaces
– An interface can act as a type, so you can declare

variables that have, for instance, the Iterator type

– This allows you to point at a class who implements the
Iterator interface without knowing (or caring) about
what its actual type is

February 27, 2001 © Kenneth M. Anderson, 2001 7

UML Notation

• To indicate that a class implements a
particular interface, use the “lollipop”
notation

• This is also called “realization”

Stack

The lollipop

Iterator

February 27, 2001 © Kenneth M. Anderson, 2001 8

UML Notation, continued

• When drawing an interface using a class
diagram, realization is shown using the
following notation

«interface»
Iterator

init()
next()
more()

Stack

The fact that
realization has
two notations
is, in my opinion,
unfortunate.



February 27, 2001 © Kenneth M. Anderson, 2001 9

Roles

• A class can implement more than one
interface
– each interface represents a role that a class can

play

– we saw how roles can be specified for
associations back in lecture 11

February 27, 2001 © Kenneth M. Anderson, 2001 10

Returning to Lecture 12

• In lecture 12, we deferred two advanced
association notations
– interface specifiers

– interface realization

• We have already covered interface
realization

February 27, 2001 © Kenneth M. Anderson, 2001 11

Interface Specifiers

• In an association, a role name can specify
the specific interface that it is presenting to
the class on the other side of the association

Person
supervisor: Manager
1

*worker: Employee

February 27, 2001 © Kenneth M. Anderson, 2001 12

Links

• An association specifies a relationship
between two classes
– A link is an instance of an association

Ken: Person Susanne: Personadvisor student

Person advisor

student
1

*



February 27, 2001 © Kenneth M. Anderson, 2001 13

Objects

• Objects are instances of classes
– an object can be named or unnamed

Ken’s Print Queue: Queue

: Photo

A named object

An unnamed object

February 27, 2001 © Kenneth M. Anderson, 2001 14

Multiobjects

• If you need to model a collection of
anonymous objects (such as a stack or
queue), you can use the multiobject notation

:Queue:Queue

This represents the
collection object and
all of its individual
instances

February 27, 2001 © Kenneth M. Anderson, 2001 15

Orphan Instances

• In some situations, you may need to model
an object whose type is unknown
– This can occur in practice when dynamically

loading an object into memory
– Use the orphan notation to indicate such an

object

plugin :

If you later discover the type
of an orphan instance, you
can transform it to a named
instance using the «become»
stereotype (not yet covered)

February 27, 2001 © Kenneth M. Anderson, 2001 16

Active Objects

• Finally, you can indicate that an object has
its own flow of control (e.g. it’s a Thread
object) using the following notation

n: notifier


