
Lecture 12: Advanced Class Diagrams

Kenneth M. Anderson

Object-Oriented Analysis and Design

CSCI 6448 - Spring Semester, 2001

February 22, 2001 © Kenneth M. Anderson, 2001 2

Goals for this Lecture

• Examine Advanced UML Notations
– for Classes

– and Associations

• We’ll cover interfaces and object diagrams
in the next lecture

February 22, 2001 © Kenneth M. Anderson, 2001 3

Advanced UML Class Notations

• UML supports a number of advanced
modeling features for classes
– Class and Attribute Properties

– Class and Attribute Multiplicity

– Class-Scope Attributes and Operations

– Visibility

February 22, 2001 © Kenneth M. Anderson, 2001 4

An Example

Connection
{root}

 - id: integer {frozen}
#ports [0..1] : ioStreams

numOfConnections: integer

 - setId()
 + getId()

createConnection()

Abstract Class

Property

3
Multiplicity

Visibility

Multiplicity

Class Scope

February 22, 2001 © Kenneth M. Anderson, 2001 5

Visibility

• The visibility of an attribute or operation specifies
whether it can be used by other classes; the default
visibility is public

• Three types
– public (+)

• Any outside class can access the feature (as long as it has a
reference to the class)

– protected (#)
• Any descendant of the class can use the feature

– private (-)
• Only the host class can access the feature

February 22, 2001 © Kenneth M. Anderson, 2001 6

Scope

• A feature (attribute or operation) can be
assigned a scope
– instance: each instance of a class has its own

state for the feature
– classifier (or class): There is only one value for

this feature across all classes
• numberOfConnections in the previous example

• Classifier scope is indicated by underlining
the feature definition

February 22, 2001 © Kenneth M. Anderson, 2001 7

Properties

• A class can be assigned two properties
– root - the class can have no parents
– leaf - the class can have no children

• A property is indicated by placing it below the class in
brackets, e.g. {leaf}
– attributes and operations can have properties too (covered later in

this lecture)

• A class can also be abstract; which means that no instances
can be created of this class
– This is indicated by placing the class name in italics
– This is used when the root class is meant to serve as a template for

creating various subclasses

February 22, 2001 © Kenneth M. Anderson, 2001 8

Multiplicity

• In the previous lecture, we saw multiplicity used
for associations

• On classes, multiplicity constrains the number of
instances that can be created for a class
– The multiplicity for classes is indicated in the top, right

corner of the class

• On attributes, it constrains the number of values
an attribute can have
– this lets you specify attributes that can be modeled as

arrays: ports[2..*] : Port

February 22, 2001 © Kenneth M. Anderson, 2001 9

Complete Attribute Syntax

• The complete syntax for attributes is
[visibility] name [multiplicity] [: type]
[= initial-value] [{property}]

• Example
+ ports [2..*] : Port = null {addOnly}
id : integer = 0

• Attribute Property Values
– changeable: default, freely modifiable
– addOnly:may add new values;no changes allowed
– frozen: the value may not change after the object is

initialized
February 22, 2001 © Kenneth M. Anderson, 2001 10

Complete Operation Syntax

• The complete syntax for operations is
[visibility] name [(parameter-list)] [:
return-type] [{property}]

• The complete syntax for a parameter is
[direction] name : type [= default-value]

• Examples
+ set(n : Name, s : String) {sequential}

- setId(inout id : integer)

February 22, 2001 © Kenneth M. Anderson, 2001 11

Additional Operation Info

• Possible Direction Values
– in : An input parameter; may not be modified

– out : An output parameter; may be modified to communicate with
caller

– inout: An input parameter; may be modified

• Possible Operation Properties
– isQuery: Does not change state of system

– sequential: does not protect against multiple threads

– guarded: does protect against multiple threads

– concurrent: multiple threads can execute it at the same time

February 22, 2001 © Kenneth M. Anderson, 2001 12

Associations

• Advanced adornments for associations include
– navigation

– visibility

– qualification

– interface specification {next lecture}

• In addition, we will introduce the notions of
– association classes

– association constraints

– interface realization {next lecture}

February 22, 2001 © Kenneth M. Anderson, 2001 13

Association Navigation

• A direction can be added to an association

• in this example, you can navigate from
objects of type User to objects of type
Password but not the other way around

User Password

February 22, 2001 © Kenneth M. Anderson, 2001 14

Association Visibility

• Visibility can be assigned to an association role
– public: objects outside the association can navigate the

association

– protected: only an object and its children can access a
protected association

– private: only the objects that participate in the
association can navigate it

UserGroup User Password- key

February 22, 2001 © Kenneth M. Anderson, 2001 15

Association Qualification

• Associations sometimes model relationships that
involve “lookup”
– That is, when navigating the relationship, you are

looking for a particular object (or set of objects)

• Example
– A phonebook consists of multiple entries

– Given a name, we want to look up the associated phone
number

February 22, 2001 © Kenneth M. Anderson, 2001 16

Association Qualification, cont.

• UML can model such a situation using an
association qualification
– the qualification is drawn as a rectangle

extending out of its associated class

– the rectangle contains the attributes used to
perform the “look up”

Phonebook Entriesname: string

February 22, 2001 © Kenneth M. Anderson, 2001 17

Association Classes

• There are times when it becomes necessary
to associate data with an association
– Employment: should the details of a job be

associated with a company object or a person
object?

Company Person

Job
February 22, 2001 © Kenneth M. Anderson, 2001 18

Association Constraints

• UML provides five pre-defined association
constraints
– implicit: the relationship is conceptual
– ordered: the set of objects at one end of the association

are in an explicit order
– changeable: links between objects can be modified

freely
– addOnly: new links may be added only
– frozen: a link, once added, cannot be modified

• Constraints are drawn in braces: {frozen}

