
Lecture 11: Class Diagrams

Kenneth M. Anderson

Object-Oriented Analysis and Design

CSCI 6448 - Spring Semester, 2001

February 20, 2001 © Kenneth M. Anderson, 2001 2

Goals for this Lecture

• Examine Classes In Depth
– Including associations

• Review UML Notation for Class Diagrams

February 20, 2001 © Kenneth M. Anderson, 2001 3

Classes

• Classes are used to identify the common
characteristics of a particular type of individual
– Recall from lecture 3 that in order to understand a

domain, we need a unique set of individuals from
which we can build our descriptions

• In UML, classes consist of
– Names, Attributes, Operations, Responsibilities

– and participate in various types of associations

February 20, 2001 © Kenneth M. Anderson, 2001 4

Class Diagram: Basics

Customer
java::awt::Rectangle

Class

Simple Name Path Name

UML has a grouping mechanism known
as packages. In the example above, the
Rectangle class is contained in a
package called awt. The awt package is
contained in the java package. We will
cover packages later this semester.



February 20, 2001 © Kenneth M. Anderson, 2001 5

Class Diagram: Basics, continued

Shape
x, y

move()
resize()

display()

Name
Attributes

Operations

Shape defines
the core data
and behavior
for all shape
objects

Responsibilities

February 20, 2001 © Kenneth M. Anderson, 2001 6

Attributes and Operations

• UML Attributes/Operations start with names
– x, y, move(), draw()

• You can then add types and parameters
– x: integer
– intersect(x, y): boolean

• Finally, you can add defaults
– x : integer = 5
– intersect(x: integer = 0, y: integer = 0): boolean

• They can be organized using stereotypes, as shown on
page 52 of the UML User Guide

• Note: The signature of an operation consists of its name,
parameters, and return type

February 20, 2001 © Kenneth M. Anderson, 2001 7

Customizing with Stereotypes

• Stereotypes are a UML extension mechanism
– You will see them used pretty much everywhere to

customize and extend the basic UML notation

– For instance, you can indicate that a class represents a
particular user role with stereotypes like this

Customer
«Role»

February 20, 2001 © Kenneth M. Anderson, 2001 8

Classes in Analysis and Design

• After domain analysis, your designations serve as
excellent candidates for classes
– Start by identifying the names of the most important

classes and list responsibilities
– As analysis continues, you can add attributes and

operations (without types)
– In design, you will flesh out the classes with more

information such as types and method signatures

• Your classes, thus, set the scope for your object-
oriented designs



February 20, 2001 © Kenneth M. Anderson, 2001 9

Relationships

• Classes can participate in many types of
relationships
– Generalizations

• As described in lecture 7

– Dependencies
• Similar to a module “uses” relationship
• A class requires another class to function correctly

– Associations
• Structural Relationships among instances

February 20, 2001 © Kenneth M. Anderson, 2001 10

Examples

Shape

Rectangle

Square

Window

Scrollbar

Generalization

Dependency

Association

February 20, 2001 © Kenneth M. Anderson, 2001 11

Generalization

• A parent-child relationship
– The child shares features with the parent but may add additional

attributes and behavior
– A child can substitute for a parent
– A child can also override the behaviors of a parent but this

conflicts with substitutability

• Also known as an “is-a” relationship
– A rectangle is a shape
– A square is a rectangle

• A class with no parents is a root class; A class with no
children is a leaf class

February 20, 2001 © Kenneth M. Anderson, 2001 12

Dependency

• A dependency is a “using” relationships that
asserts that a change in one class may affect
another class that uses it
– A typical instance of a dependency is when a

class appears as an argument in the signature of
another class

– If a class has multiple dependencies, you can
distinguish among them using stereotypes



February 20, 2001 © Kenneth M. Anderson, 2001 13

Association

• An association is a structural relationship between
instances of classes
– objects of one class are connected to objects of another

class

– Given an association, you can navigate from an object
of one class to an object of the class at the other end

– It is legal for a class to have an association that begins
and ends with itself

• Examples: stacks, queues, and lists

February 20, 2001 © Kenneth M. Anderson, 2001 14

More on Associations

• Associations can have “adornments”
– name

– role

– multiplicity

– aggregation

February 20, 2001 © Kenneth M. Anderson, 2001 15

Association Names

• Names can be used to indicate the nature of
the association
– An arrow can be used to indicate the direction

of the relationship
• Typically, names are not reversible

– to change the direction of the arrow, a new name must be
used

Person Company
Works for �

�Employs

February 20, 2001 © Kenneth M. Anderson, 2001 16

Association Roles

• A class that participates in an association
plays a particular role

• These roles can be given explicit names
– and may lead to the creation of interfaces

• A class can participate in multiple
associations (and thus roles) at once

Person Companyemployee employer



February 20, 2001 © Kenneth M. Anderson, 2001 17

Multiplicity

• An association represents a structural relationship
among objects
– You can specify how many objects participate in a

particular association using multiplicity

– To interpret a multiplicity always assume a “1” is at the
opposite end of the association, for example,

• a person may have only one employer

• a company may have one or more employees

Person Companyemployee employer

1..* 1

February 20, 2001 © Kenneth M. Anderson, 2001 18

Aggregation

• Some associations have a “whole/part” type
relationship, or a “has-a” relationship
– These are known as aggregations

• indicated with a diamond at the “whole” end
• a white diamond is a “simple” aggregation and does not imply

a relationship between the lifetimes of the objects
• a black diamond is a “composition,” a stronger form of

aggregation which does imply a relationship between the
lifetimes of the objects

– e.g. destroy the whole and you destroy the parts

– Note: this information “overrides” the information I
presented in lecture 7

February 20, 2001 © Kenneth M. Anderson, 2001 19

Examples

Company Department
1 *

Car Wheels
4

February 20, 2001 © Kenneth M. Anderson, 2001 20

Class Activity Session

• Create the following class diagrams
– An alphabet with 26 letters
– A department that employs multiple types of employees:

professors, admins, office managers, and graduate students;
professors manage students; office managers manage admins; each
professor has an admin that assists them

– An e-mail program that can contain multiple mailboxes, each with
multiple messages

– A class hierarchy of Shapes (including ovals, rectangles, arcs, lines,
and points) with a special Shape known as a connector that can
connect any two shapes

– Finally, write a textual description of the class diagram that Dr.
Anderson will show in lecture


