
Lecture 7: Object-Oriented Concepts

Kenneth M. Anderson

Object-Oriented Analysis and Design

CSCI 6448 - Spring Semester, 2001

February 1, 2001 © Kenneth M. Anderson, 2001 2

Goals for this Lecture

• Discuss History of Object Orientation
• Discuss Basic Concepts

– Object
– Class
– Encapsulation
– Inheritance
– Composition
– etc.

February 1, 2001 © Kenneth M. Anderson, 2001 3

History of Object Orientation

• 1967 - Development of Simula
• 1970’s SmallTalk

– First “pure” object-oriented language
– Java and C++ are not pure

• 1980’s Graphical User Interfaces
– 200 person-years of effort to develop the Apple Lisa; claim made

that it would not have been possible without the inherent
reusability of object-oriented code

• 1990’s OO Databases, Distributed Systems, and OO
Analysis and Design Methods

• 2000’s Components and Software Architectures

February 1, 2001 © Kenneth M. Anderson, 2001 4

OO Concepts

• Object-Orientation divides the world into objects
that posses
– (hidden) information

– methods (or behavior)

– a public interface

• This structure provides encapsulation
– data and behavior are private; as long as the public

interface remains unchanged, the data and behavior of
an object can be freely modified

February 1, 2001 © Kenneth M. Anderson, 2001 5

Benefits

• Two benefits from this approach are
– Understanding of the system is easier as the

semantic gap between the system and reality is
small.

– Modifications to the model tend to be local as
they often result from an individual item, which
is represented by a single object

February 1, 2001 © Kenneth M. Anderson, 2001 6

Message Passing

• Objects communicate with each other via message
passing
– this prevents data duplication between objects

• if you need information from another object, ask for it!

– the types of messages that you can send to an object are
determined by its public interface

– the message passing system is separate from objects
• this allows a caller to send a message to one object, but

(unbeknownst to it) have its message received and processed
by another object

• this is known as late binding

February 1, 2001 © Kenneth M. Anderson, 2001 7

50% Done!

• You now know 50% of the idea behind
object technology (in only two slides!)
– Objects have public interfaces that hide data

and behavior from the external world
– Objects access this information via message

passing

• The other 50% has to do with how we
classify objects and relate them to one
another

February 1, 2001 © Kenneth M. Anderson, 2001 8

More on Objects

• Objects form the basic unit of OO A&D
– They are instances organized into classes with common

features
• Attributes (previously called data)

– these represent the object’s state or they capture associations
with other objects

• Operations/Methods (Behavior)
– these are procedures or services that the object can perform

• Invariants (new)
– Rules that specify how the other features of the object are related

or under what conditions the object is viable

February 1, 2001 © Kenneth M. Anderson, 2001 9

Classes

• A class is a collection of objects which
share common attributes and methods
– A class can be regarded as a template for

creating instances (e.g. objects)

Integers

value: int

int add(int a)

A

value: 23

B

value: 42

February 1, 2001 © Kenneth M. Anderson, 2001 10

More on Classes

• A type is the specification of a class
– A type represents ideas

• Also known as the intension of a class

– A type’s attributes and methods are known as its
features or responsibilities

• Attributes are a responsibility for knowing something; methods
are a responsibility for doing something

• A class is the implementation of a type
– It represents the collection of all objects that are

instances of its type; known as the extension of a class

February 1, 2001 © Kenneth M. Anderson, 2001 11

Object Relationships

• An object receives all of the attributes and
methods of its class
– this is known as classification

• It is possible for an object, however, to receive
attributes and methods from more general
superclasses
– this is known as inheritance

• It is also possible for an object to consist of other
objects (by pointing at them)
– this is known as composition

February 1, 2001 © Kenneth M. Anderson, 2001 12

Rectangle
top : int�
bottom : int�
left : int�
right : int�
fill : color�
stroke : color

move(x,y)
draw()�
getFill()�
getStroke()

Circle

x : int�
y : int�
radius : int�
fill : color�
stroke : color

move(x,y)
draw()�
getFill()�
getStroke()

Triangle

x : int�
y : int�
fill : color�
stroke : color

move(x,y)
draw()�
getFill()�
getStroke()

Rectangle
top : int�
bottom : int�
left : int�
right : int�
fill : color�
stroke : color

move(x,y)
draw()�
getFill()�
getStroke()

Circle

x : int�
y : int�
radius : int�
fill : color�
stroke : color

move(x,y)
draw()�
getFill()�
getStroke()

Triangle

x : int�
y : int�
fill : color�
stroke : color

move(x,y)
draw()�
getFill()�
getStroke()

Classification

• Three Objects
– Each with similar attributes and operations
– They are instances of the rectangle, circle, and

triangle classes

February 1, 2001 © Kenneth M. Anderson, 2001 13

Discussion

• On the surface, there appears to be some
duplication occurring
– for instance, if we were to implement each of

these operations, we would need three separate
instances of the draw method, three separate
instances of the move method, etc.

• We can use inheritance to address this
situation

• Any suggestions?
February 1, 2001 © Kenneth M. Anderson, 2001 14

Inheritance

• Inheritance is a mechanism that enables
generalization and specialization
– generalization occurs when the common features of a

set of classes is unified in a superclass
• each member (potentially) retains its identity but now stores

only those attributes and behavior specific to it

– specialization occurs when a generic class is extended
into a set of subclasses; each subclass shares the
features of the generic class but has additional attributes
and/or behaviors

– thus, generalization/specialization are two sides of the
same coin; it just depends on where you start

February 1, 2001 © Kenneth M. Anderson, 2001 15

More on Inheritance

• Inheritance is a mechanism that lets
– subclasses share attributes and methods with

superclasses
• therefore, if class A is a superclass of class B, and

class A defines an attribute “age: int”, then B
automatically has an attribute called age of type
integer

• furthermore, if class A has an operation “draw”,
then class B automatically has an operation called
draw;

February 1, 2001 © Kenneth M. Anderson, 2001 16

Example Illustrated
A

B

If A defines an attribute called age, then we
can set a value for that attribute in B, because
B inherits that attribute from A

Thus, b.age = 10 is perfectly legal, even if B s
class definition says nothing about an age
attribute

In the same manner, if A defines a method
called draw() but B does not, it is still legal to
say b.draw() because when we pass the draw
message to B, it will look for a method called
draw first in B, and then in A, thus b.draw()
will result in the draw method defined by A to
execute.

superclass

subclass

February 1, 2001 © Kenneth M. Anderson, 2001 17

Earlier Example Revisited

Rectangle

top : int�
bottom : int�
left : int�
right : int�

move(x,y)
draw()

Circle

radius : int

move(x,y)
draw()

Triangle

move(x,y)
draw()

Shape

x : int�
y : int�
fill : color�
stroke : color

getFill()�
getStroke()

February 1, 2001 © Kenneth M. Anderson, 2001 18

Substitutability

• One benefit of inheritance is the notion of
substitutability
– since a subclass supports all of the methods that its

superclass supports, a subclass can “stand in” or
“substitute” for the superclass

– Thus if I have a class called Shape (of which Rectangle,
Circle, and Triangle are subclasses) then I can say
things like

• myVariable: Shape
• myVariable := new Circle()
• myVariable.getFill()

February 1, 2001 © Kenneth M. Anderson, 2001 19

Overriding

• A benefit of inheritance is that subclasses
can override the behavior of their
superclasses
– that is, they can change the behavior of the

inherited methods
– this is a powerful feature, but it is at odds with

substitutability
• the greater the change in behavior, the less the

subclass is able to “stand in” for its superclass

February 1, 2001 © Kenneth M. Anderson, 2001 20

Why do we need overriding?

• Consider our shape example, currently we do not
have the routines “draw” and “move” defined in
the Shape class
– because each of these routines need to do something

different based on their shape
– but superclasses are supposed to contain “common

features” of its superclass; so here we have three
subclasses each with a draw and move routine that does
not appear in the superclass

– to fix this; we can add move and draw to Shape, but
make them null-ops, also known as “abstract”

February 1, 2001 © Kenneth M. Anderson, 2001 21

Example, continued
Now, we have an
move and draw in
Shape, and the
subclasses can
override the behavior
with something that
makes sense for them.

Rectangle

top : int�
bottom : int�
left : int�
right : int�

move(x,y)
draw()

Circle

radius : int

move(x,y)
draw()

Triangle

move(x,y)
draw()

Shape

x : int�
y : int�
fill : color�
stroke : color

getFill()�
getStroke()�
move(x,y)
draw()

February 1, 2001 © Kenneth M. Anderson, 2001 22

Polymorphism

• The concept of polymorphism takes advantage of
this new configuration to provide even more
power
– simply put, polymorphism routes calls to a method of a

superclass to its subclasses if the subclass has
overridden the behavior of the superclass

– we can now create generic algorithms with respect to
the Shape class, that is, we can create an array of Shape
objects (rectangles, circles, etc.), call move on each
instance, and the correct move routine will be called
based on that instance’s type

February 1, 2001 © Kenneth M. Anderson, 2001 23

Polymorphism Example

ShapeArray a = {new circle(), new
rectangle(), new triangle()}

Shape x
for i = 1 to a.size() {

x = a(i);
x.move(0,x.y)

}
• first circle.move() is called, then rectangle.move(),

then triangle.move() even though the type of x is
“Shape”

February 1, 2001 © Kenneth M. Anderson, 2001 24

Composition

• Objects can also participate in composition
relationships

• In composition, one object encapsulates another
and uses the internal object to help meet its own
obligations

• For instance, a Window object may contain a
Rectangle object (as an attribute); it can use the
Rectangle object to help keep track of its
coordinates, calculate its area, determine if its
overlapping some other Rectangle, etc.

February 1, 2001 © Kenneth M. Anderson, 2001 25

Aggregation

• Composition is sometimes referred to as
aggregation
– Aggregation is somewhat different from the sense of

composition used in the previous slide
– The classic example for aggregation is a Car object; it is

composed of a number of wheel objects, door objects,
instrument objects, an engine object, etc.

• In practice, composition relationships can model a
variety of associations; we will learn more about
this later in the semester

February 1, 2001 © Kenneth M. Anderson, 2001 26

Summary

• OO divides the world into objects
– each object has attributes (state), methods (behavior),

an interface, and (sometimes) constraints

– the interface hides the details of the attributes and the
methods (encapsulation)

– objects communicate by sending each other messages

– objects can be arranged in various ways including
inheritance and composition

– inheritance enables overriding and polymorphism

