#### Goals for this Lecture • Discuss Models Lecture 6: Models - to wrap up our discussion on descriptions Kenneth M. Anderson **Object-Oriented Analysis and Design** CSCI 6448 - Spring Semester, 2001 © Kenneth M. Anderson, 2001 2 February 1, 2001 Models: What are they? Focus: Mathematical Models • Examples • Mathematicians and Logicians speak of the real world as a model of their theories - model airplane - Theory is fundamental and the world is – new car models secondary - economic models • So, frustrated airline customers waiting to check in - mathematical models are merely a model of a queue • What generic characteristics do these • A pile of plates is a model of a stack examples possess? • Is this view useful to software engineers? © Kenneth M. Anderson, 2001 February 1, 2001 © Kenneth M. Anderson, 2001 3 February 1, 2001 4

| Software Engineering Models                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Models are more than Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Ed Yourdon in <i>Modern Structured Analysis</i> <ul> <li>The systems analysis modelsare for the most part, paper models of the system-to-be, that is, abstract representations of what will eventually become a combination of computer hardware and computer software</li> </ul> </li> <li>Marca and McGowan in <i>SADT</i> <ul> <li>An SADT system description is called a "model"An SADT model is a complete, concise, and consistent description of a system which is developed for a particular reason</li> </ul> </li> <li>Are these definitions useful? <ul> <li>These models sound like descriptions</li> </ul> </li> </ul> | <ul> <li>From Ackoff's Scientific Method <ul> <li>He distinguishes three kinds of models</li> <li>iconic <ul> <li>Model airplanes are icons of real airplanes</li> </ul> </li> <li>analogic <ul> <li>an electric network modeling liquid flow via pipes</li> <li>wires are analogous to pipes, current = flow, etc.</li> </ul> </li> <li>analytic <ul> <li>a set of differential equations claiming to describe how prices change; represent economist's analysis</li> </ul> </li> </ul></li></ul> |
| February 1, 2001 © Kenneth M. Anderson, 2001 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | February 1, 2001 © Kenneth M. Anderson, 2001 6                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

# In SE, Models are Analogic

- Analogic models are interesting because they are analogues of the things they model
  - They share properties and structure
    - For instance, a good model airplane is not only an "icon", it can also fly!
  - Analogic models thus simulate (to some degree) the things they model
- Object-Orientation is predicated on this notion
  - If I want to model an elevator system, I will create objects in my descriptions that model real world elements, such as elevators, doors, buttons, etc.
  - I use these objects to create requirements, to design a software system, and finally to implement it

#### February 1, 2001

7

### More on Analogic Models

- Analogic models have two distinct characteristics
  - First, there is some description that applies both to the machine and to the world it models, and captures what they have in common
    - what we have been calling "the shared phenomena"
  - Second, there is a correspondence between individuals in the machine and individuals in the world

# An Example

- Assume you are building a database of nineteenthcentury English novelists
  - You are building a database model inside the computer of the real world of the novelists
    - Some of the real-world relationships among authors, books, fictional characters will also hold among the novelist records, book records, and character records in the database
  - The machine, thus, becomes a model of reality; Information about this particular reality becomes accessible to the machine and its users

| February | 1,2001 |
|----------|--------|
|----------|--------|

```
© Kenneth M. Anderson, 2001
```

# Correspondence between Reality and the Machine



## Another Way to Think About It



We can use this one model and switch mentally between the domain and the machine; however beware, this risks causing confusion between

<sup>¥</sup> the description that is true of the domain and the machine

¥the description that is just true of the domain

¥the description that is just true of the machine



11

9