
Lecture 2: The
Requirements/Design Gap

Kenneth M. Anderson

Object-Oriented Analysis and Design

CSCI 6448 - Spring Semester, 2001

January 18, 2000 ' Kenn eth M. Anderson, 2001 2

Goals for this Lecture

• Review definition of software engineering

• Discuss requirements engineering

• Discuss requirements analysis

• Discuss requirements/design gap

January 18, 2000 ' Kenn eth M. Anderson, 2001 3

What is “Software Engineering”

• Software
– Computer programs and their related artifacts

• Engineering
– The application of scientific principles in the

context of practical constraints

January 18, 2000 ' Kenn eth M. Anderson, 2001 4

A Definition (Daniel M. Berry)

• Software engineering is that form of engineering
that applies:

– a systematic, disciplined, quantifiable approach,

– the principles of computer science, design,
engineering, management, mathematics,
psychology, sociology, and other disciplines,

• to creating, developing, operating, and
maintaining cost-effective, reliably correct, high-
quality solutions to software problems.

January 18, 2000 ' Kenn eth M. Anderson, 2001 5

Engineers Build Machines
• Software is intangible

– Descriptions of a desired machine, written according to
specific languages and notations

• Computer is tangible
– General-purpose description executor

– Behaves as if it were the desired machine

• Software engineers “build” descriptions
– Organizing, structuring, and making complex

assemblages of descriptions

– Raw materials: languages and notations

January 18, 2000 ' Kenn eth M. Anderson, 2001 6

Basic Software Engineering Activities

• Create
– Modeling

• Record
– Specification

• Analyze
– Verification & Validation

• Configure
– Selection, Translation, & Deployment

January 18, 2000 ' Kenn eth M. Anderson, 2001 7

IEEE definition of requirement

• A condition or capacity needed by a user to solve
a problem or achieve an objective

• A condition or capability that must be met or
possessed by a system or system component to
satisfy a contract, standard, specification or other
formally imposed documents

• A documented representation of a condition or
capability as in 1 or 2

January 18, 2000 ' Kenn eth M. Anderson, 2001 8

Requirements Engineering

• “The systematic process of developing
requirements through an iterative
cooperative process of analyzing the
problem, documenting the resulting
observations in a variety of representation
formats, and checking the accuracy of the
understanding gained.”
– K. Pohl, 1993

January 18, 2000 ' Kenn eth M. Anderson, 2001 9

Questions to consider

• Can one be systematic in the face of vaguely
understood requirements?

• Can one know whether the requirements are
complete in the context of iteration?

• How do you define cooperation among agents?

• What representation formalisms can be used?

• How can a genuine shared understanding be
reached?

January 18, 2000 ' Kenn eth M. Anderson, 2001 10

Two sides to Requirements Engineering

• Requirements Elicitation
– The process whereby a development agency

discovers what is needed and why

– Uses knowledge elicitation techniques
• ethnomethodology, human factors, ergonomics, etc.

• Requirements Analysis
– The process of understanding the requirements

– Asks questions about completeness and consistency

– Uses formal methods of systems analysis

January 18, 2000 ' Kenn eth M. Anderson, 2001 11

Requirements Analysis

• Understanding the phenomena of the application
domain

• Describing the required relationships among the
phenomena

• Example: Elevator Controller
– Phenomena concern the application domain, not the

(software) machine that controls it
• buttons being pressed, buttons lighting up, cars moving in

directions, doors opening and closing, people entering and
leaving

January 18, 2000 ' Kenn eth M. Anderson, 2001 12

Design

• Creating a machine that satisfies the requirements
– Machine ensures satisfaction by sharing phenomena

with application domain
• shared events occur in both domains

• shared states visible in both domains

• Example: Elevator Controller
– “Press up button on floor 3” ≈ “Signal on line 3U”

– “Car at floor 3” ≈ “Floor_Sensor_State[3] = 1”

January 18, 2000 ' Kenn eth M. Anderson, 2001 13

Application versus Machine Phenomena

• Not all phenomena are shared

• Creates requirements/design gap

• Example: Elevator Controller
– Car movement while between sensors

– Correspondence of person pushing button to person
exiting

Application Domain Machine

A MA ∩M

January 18, 2000 ' Kenn eth M. Anderson, 2001 14

Does System Satisfy
Requirements?

� If computer behaves as P, then S satisfied
– C,P a S, where C are the properties of the computer

� If S satisfied, then R must be satisfied
– D,S a R, where D are the properties of the application

domain

R(equirements) ⇒
A

P(rogram) ⇒ M

S(pec.) ⇒ A ∩∩∩∩ M Application Domain Machine

A MA ∩M

January 18, 2000 ' Kenn eth M. Anderson, 2001 15

Application Domain Machine

A MA ∩M

Understanding Domain is Critical
• Example: Automated Thrust Reverser

– Requirement
• reverse_enabled IFF moving_on_runway

– Domain Properties Assumed by Developers
• wheel_pulses_on IFF wheels_turning

• wheels_turning IFF moving_on_runway

wheel_pulses_onmoving_on_runway
wheels_turning reverse_enabled

January 18, 2000 ' Kenn eth M. Anderson, 2001 16

Domain Misunderstandings ➠
Errors

• Example: Automated Thrust Reverser
– Derived Interface Specification

• reverse_enabled IFF wheel_pulses_on

– Domain Properties Assumed by Developers
✔wheel_pulses_on IFF wheels_turning

✘wheels_turning IFF moving_on_runway

– Aquaplaning Wheels
• moving_on_runway is TRUE

• wheels_turning is FALSE

