
May 3, 2001 © Kenneth M. Anderson, 2001 1

Inheritance Heuristic Revisited

• I was unprepared in last lecture to cover one
of the inheritance-related heuristics

• So here is a more complete example, that
illustrates the heuristic more clearly

May 3, 2001 © Kenneth M. Anderson, 2001 2

Inheritance Heuristics Revisited

• Consider a start up company…
– they need a class to store information about

employees
NewEmployee

Salary
Sicktime
MedicalPlan
taxes()
benefits()

May 3, 2001 © Kenneth M. Anderson, 2001 3

Six Months Later

• The company decides to make a distinction
between new employees and employees that
have been with the company for six months

FullEmployee

Salary
Sicktime
MedicalPlan
DentalPlan
Vacation
Car
taxes()
benefits()

We notice that the full
employee is just a special
case of the new employee

so…

May 3, 2001 © Kenneth M. Anderson, 2001 4

Lets use inheritance

NewEmployee

Salary
Sicktime
MedicalPlan
taxes()
benefits()

FullEmployee

DentalPlan
Vacation
Car

benefits()



May 3, 2001 © Kenneth M. Anderson, 2001 5

Returning to the Heuristic

• The heuristic that I had trouble explaining is
– All base classes should be abstract classes

• This heuristic implies that all the roots of an
inheritance tree should be abstract, while
only the leaves should be concrete.
– Why is this a “good thing”?

– Consider our example…

May 3, 2001 © Kenneth M. Anderson, 2001 6

Adding to NewEmployee

• Assume we decide that all new employees should
go to an orientation session
– we want to add an attribute to track whether an

employee has attended the session
– Can we add this attribute without adding it to the

FullEmployee class? (Full Employees either do not
need the orientation session or already had it)

• The answer is no! (because full employee is a subclass of new
employee)

• This is the danger of inheriting from a concrete class
– (which is the fear that the specialization link between the two

classes will not hold up under extension or refinement of the
design)

May 3, 2001 © Kenneth M. Anderson, 2001 7

The solution

• Have both classes inherit from an abstract
base class, that captures the common
features of both classes

Employee

Salary
Sicktime
MedicalPlan
taxes()
benefits()

FullEmployee

DentalPlan
Vacation
Car

benefits()

NewEmployee

Orientation

May 3, 2001 © Kenneth M. Anderson, 2001 8

Ramifications

• If you violate this heuristic, as we did with
this example, you may (probably will) end
up in a situation where you need to shift to
the abstract base class design
– Then, you need to introduce a new class,

refactor, and change NewEmployee references
to Employee references, except when access is
needed to the new “orientation” attribute


