
Design Patterns and AntiPatterns

Object-Oriented Analysis and Design

CSCI 6448 - Fall 1998

Kenneth M. Anderson

CSCI 6448

Kenneth M. Anderson

Goals of the Lecture

n Present the ideas behind Design
Patterns and AntiPatterns
Ð Present two examples of each

n Assign Patterns to Volunteers
Ð These will be presented next Tuesday

CSCI 6448

Kenneth M. Anderson

Design Patterns

n Addison-Wesley book published in 1995
Ð Erich Gamma

Ð Richard Helm

Ð Ralph Johnson

Ð John Vlissides

n Known as ÒThe Gang of FourÓ

n Presents 23 Design Patterns

n ISBN 0-201-63361-2

CSCI 6448

Kenneth M. Anderson

AntiPatterns

n John Wiley & Sons book published in 1998
Ð William J. Brown

Ð Raphael C. Malveau

Ð Hays W. ÒSkipÓ McCormick III

Ð Thomas J. Mowbray

n Presents a variety of AntiPatterns
Ð Development, Architecture, & Management

n ISBN 0-471-19713-0



CSCI 6448

Kenneth M. Anderson

Pattern Resources

n Pattern Languages of Programming
Ð Technical conference on Patterns

n The Portland Pattern Repository
Ð http://c2.com/ppr/

n Patterns Homepage
Ð http://hillside.net/patterns/patterns.html

CSCI 6448

Kenneth M. Anderson

What are Patterns?

n Christopher Alexander talking about buildings
and towns
Ð ÒEach pattern describes a problem which occurs

over and over again in our environment, and then
describes the core of the solution to that problem,
in such a way that you can use this solution a
million times over, without ever doing it the same
way twiceÓ

Ð Alexander, et al., A Pattern Language. Oxford
University Press, 1977

CSCI 6448

Kenneth M. Anderson

Patterns, continued

n Patterns can have different levels of
abstraction

n In Design Patterns (the book),
Ð Patterns are not classes

Ð Patterns are not frameworks

Ð Instead, Patterns are descriptions of
communicating objects and classes that are
customized to solve a general design problem in a
particular context

CSCI 6448

Kenneth M. Anderson

Patterns, continued

n So, patterns are formalized solutions to
design problems
Ð They describe techniques for maximizing

flexibility, extensibility, abstraction, etc.

n These solutions can typically be
translated to code in a straightforward
manner



CSCI 6448

Kenneth M. Anderson

Elements of a Pattern

n Pattern Name
Ð More than just a handle for referring to the pattern

Ð Each name adds to a designerÕs vocabulary
¥ Enables the discussion of design at a higher abstraction

n The Problem
Ð Gives a detailed description of the problem

addressed by the pattern

Ð Describes when to apply a pattern
¥ Often with a list of preconditions

CSCI 6448

Kenneth M. Anderson

Elements of a Pattern, continued

n The Solution
Ð Describes the elements that make up the

design, their relationships, responsibilities,
and collaborations

Ð Does not describe a concrete solution
¥ Instead a template to be applied in many

situations

CSCI 6448

Kenneth M. Anderson

Elements of a Pattern, continued

n The consequences
Ð Describes the results and tradeoffs of

applying the pattern
¥ Critical for evaluating design alternatives

Ð Typically include
¥ Impact on flexibility, extensibility, or portability

¥ Space and Time tradeoffs

¥ Language and Implementation issues

CSCI 6448

Kenneth M. Anderson

Design Pattern Template

n Pattern Name and
Classification
Ð Creational
Ð Structural

Ð Behavioral

n Intent

n Also Known As

n Motivation

n Applicability

n Structure

n Participants

n Collaborations

n Consequences

n Implementation

n Sample Code

n Known Uses

n Related Patterns



CSCI 6448

Kenneth M. Anderson

What is an AntiPattern?

n An AntiPattern
Ð describes a commonly occurring solution to a

problem that generates decidedly negative
consequences

Ð A design pattern can thus become part of an
AntiPattern, especially when the design problem is
used in the wrong way

¥ Popular patterns of today can become the AntiPatterns of
tomorrow

CSCI 6448

Kenneth M. Anderson

Parts of an AntiPattern

n An AntiPattern consists of two solutions
Ð The AntiPattern Solution

Ð The Refactored Solution

n The pattern describes a mechanism of
moving from the former to the latter

n In addition, the pattern identifies the
context of the former and the benefits of
the latter

CSCI 6448

Kenneth M. Anderson

AntiPatterns Research

n The study of AntiPatterns is an important research
activity. The presence of ÔgoodÕ patterns in a
successful system is not enough; you also must show
that those patterns are absent in unsuccessful
systems. Likewise, it is useful to show the presence
of certain patterns (AntiPatterns) in unsuccessful
systems, and their absence in successful systems.
Ð Attributed to Jim Coplien

n Further motivation
Ð A third of all software projects are cancelled, five out of six

software projects are unsuccessful [Johnson, 1995]

CSCI 6448

Kenneth M. Anderson

AntiPattern Viewpoints

n Software Developer
Ð technical problems and solutions

n Software Architect
Ð problems with structuring systems

n Software Manager
Ð problems with software processes and

development organizations



CSCI 6448

Kenneth M. Anderson

Root Causes of AntiPatterns

n Haste
Ð Projects are subject to severe schedule-

related stress
¥ Testing is often the victim

n Apathy
Ð Refers to a developer or organization being

unwilling to solve known problems
¥ maintain the status quo, donÕt rock the boat!

CSCI 6448

Kenneth M. Anderson

Root Causes, continued

n Narrow-Mindedness
Ð Refusal to practice solutions otherwise

known to be effective

n Sloth
Ð ÒEasy technologyÓ promotes poor decisions

and poor discipline
¥ Lack of configuration control

¥ Unstable interfaces

CSCI 6448

Kenneth M. Anderson

Root Causes, continued

n Avarice
Ð Too many details specified for a system

¥ Can lead to unnecessary or excessive
complexity

n Ignorance
Ð Failure to seek understanding of problems

and/or solutions

n Pride - ÒNot Invented HereÓ Syndrome

CSCI 6448

Kenneth M. Anderson

Examples

n Design Patterns
Ð Factory Method

¥ Creational

n AntiPatterns
Ð The Blob

¥ Development



CSCI 6448

Kenneth M. Anderson

Factory Method

n Intent
Ð Define an interface for creating an object, but let

subclasses decide which class to instantiate

n Also Known As
Ð Virtual Constructor

n Motivation
Ð Frameworks define abstract classes, but any particular

domain needs to use specific subclasses; how can the
framework create these subclasses?

CSCI 6448

Kenneth M. Anderson

Factory Method, continued

n Applicability
Ð Use the Factory Method pattern when

¥ a class canÕt anticipate the class of objects it must create

¥ a class wants its subclasses to specify the objects it
creates

¥ classes delegate responsibility to one of several helper
subclasses, and you want to localize the knowledge of
which helper subclass is the delegate

CSCI 6448

Kenneth M. Anderson

Factory Method, continued

n Participants
Ð Product

¥ Defines the interface of objects the factory method creates

Ð Concrete Product
¥ Implements the Product Interface

Ð Creator
¥ declares the Factory method which returns an object of type

Product

Ð Concrete Creator
¥ overrides the factory method to return an instance of a

Concrete Product

CSCI 6448

Kenneth M. Anderson

Factory Method Structure

Product

ConcreteProduct

Creator

ConcreteCreator

FactoryMethod()

FactoryMethod()
AnOperation()

«instantiate»

product = FactoryMethod()

return new ConcreteProduct()



CSCI 6448

Kenneth M. Anderson

Factory Method Consequences

n Factory methods eliminate the need to bind
application-specific classes into your code

n Potential disadvantage is that clients must
use subclassing in order to create a particular
ConcreteProduct
Ð In single-inherited systems, this constrains your

partitioning choices

n Provides hooks for subclasses

n Connects parallel class hierarchies
CSCI 6448

Kenneth M. Anderson

The Blob

n The Blob is found in designs where one class
monopolizes the processing, and other
classes primarily encapsulate data
Ð Like its movie counterpart, the Blob AntiPattern

consumes entire object-oriented designs!

n The key problem is that all the responsibilities
of a system are assigned to one class

n Its typically the result of a procedural design
(wolf) of an OO system (sheepÕs clothing)

CSCI 6448

Kenneth M. Anderson

Symptoms of the Blob

n A class with a large number of
attributes, operations, or both

n A large class with low cohesion

n A single controller class with simple,
data classes

CSCI 6448

Kenneth M. Anderson

Consequences of the Blob

n Limits OO advantages
Ð Low abstraction

Ð No extensibility

Ð etc.

n Blob class is too complex for reuse

n Blob class is too expensive in terms of
time and space



CSCI 6448

Kenneth M. Anderson

Causes

n Root Causes
Ð Sloth, Haste

n More specifically
Ð Lack of OO architecture

Ð Lack of (any) architecture

Ð Lack of architecture enforcement

Ð Unwillingness to refactor existing class
hierarchy when requirements change

CSCI 6448

Kenneth M. Anderson

Refactored Solution

n Refactor the Blob
Ð 1. Identify related attributes and operations

Ð 2. Move these groups to their own class

Ð 3. Reduce Òfar-coupledÓ classes
¥ Remove indirection when there is no need for it

Ð 4. Migrate associations between derived classes
to common base class

Ð 5. Remove transient behavior and attributes to
separate classes

CSCI 6448

Kenneth M. Anderson

Applicability to other Viewpoints

n Manager should insist on up-front investment
on architecture design
Ð Includes training people who have limited

architecture experience

n Architects must have the power to enforce
their designs
Ð Within reason, of course, good architects must

also be willing to acknowledge flaws and redesign!

CSCI 6448

Kenneth M. Anderson

Time to Volunteer!

n Photocopy a pattern from one of these books
Ð Present the pattern in class next Tuesday

Ð Plan on at least a five minute presentation

n We have plenty of patterns to choose from!
Ð Need at least 6 volunteers, max 10

¥ If we donÕt have enough time on Tuesday, the rest will be
presented next Thursday

Ð Walt Manaker has already volunteered to present
the Bridge Pattern


