
Design Ô Implementation

Object-Oriented Analysis and Design

CSCI 6448 - Fall 1998

Kenneth M. Anderson

CSCI 6448

Kenneth M. Anderson

Goals of the Lecture

n Discuss a variety of implementation
issues
Ð Iterative Implementation Techniques

Ð Translating Associations

Ð Scalability Considerations

Ð Managing Rapid Prototypes and Beta
software

CSCI 6448

Kenneth M. Anderson

Goal: Begin Implementation

n Situation
Ð Constructed

¥ Use cases, class diagrams, activity diagrams,
state diagrams, etc.

¥ Baseline architecture

¥ Implementation Plans

n Problem
Ð Where to start?

CSCI 6448

Kenneth M. Anderson

From UML Distilled

n Plan Iterations around Use Cases
Ð Each iteration is a mini-project

¥ Perform analysis, design, coding, testing, and
integration

¥ End with user demo and system testing

Ð Repeat

n Each iteration is incremental, building
on previously constructed functionality

CSCI 6448

Kenneth M. Anderson

Why more analysis and design?

n Why would A&D occur in each iteration?
Ð Moving down levels of abstraction

¥ The design should be complete at a logical
level, whatÕs left are more practical issues

¥ For instance, the details of a user-interface
class will eventually need to be specified

Ð screen layouts, interaction paradigms, etc.

Ð Interactions between use cases may reveal
ÒholesÓ in the logical design

CSCI 6448

Kenneth M. Anderson

First Steps

n Identify the collaborations that realize
your systemÕs use cases
Ð Specify the structural and behavioral

aspects of each collaboration

n Create stubs for each class identified in
a collaboration
Ð Each class is defined in full but with empty

bodies for operations

CSCI 6448

Kenneth M. Anderson

Example

package chimera.concepts;

import java.util.*;

public class link extends concept {

 public link() {}

 public Enumeration getAnchors() {

 return null;

 }

 public void addAnchor(anchor a) {}

 public void removeAnchor(anchor a) {}

 public int numberOfAnchors() {

 return 0;

 }

 private Vector anchors;

}

link

concept

- anchors: Vector

+ getAnchors(): Enumeration
+ addAnchor(anchor a)
+ removeAnchor(anchor a)
+ numberOfAnchors() : int

java::util

«import»

CSCI 6448

Kenneth M. Anderson

Next

n Construct a Òstart systemÓ class
Ð All it does is create the objects needed for

your system, start up any required threads,
and place the system in its start state

n Compile, link, and execute
Ð Nothing should happen, but youÕll be

surprised at how many problems crop up
the first time you do this!

CSCI 6448

Kenneth M. Anderson

Finally...

n Pick an operation in one of the classes
Ð Implement it

Ð Compile, link, execute...

n Repeat until Use Case is done

n Repeat until all Use Cases are done

n Pause for redesign and risk
management as needed

CSCI 6448

Kenneth M. Anderson

DonÕt forget

n Comments
Ð take advantage of tools like JavaDoc

n Testing
Ð Kent BeckÕs rule of thumb

¥ A developer should write at least as much test
code as production code

Ð Archive the tests and use them for
regression testing

CSCI 6448

Kenneth M. Anderson

DonÕt forget, continued

n Metrics and Planning
Ð Record how long it took you to do a task

Ð Update the master plan with the teamÕs
accomplishments

Ð See <http://psp.colorado.edu/Visitors.html>
for links to information on the importance of
metrics at an individual level

CSCI 6448

Kenneth M. Anderson

Mapping Class Diagrams and
Associations

n An association implies something about
the interface of its classes when
implemented
Ð In particular, an interface is required that

allows the association to be navigated

Ð A designer can indicate the navigation
responsibilities of a class with arrowheads
on associations in UML diagrams

CSCI 6448

Kenneth M. Anderson

Example
Viewer Object

View

AnchorLink
*

**

**

navigability

The source is
obligated to
provide an interface
to the target.

Thus views must reveal
their viewers, but viewers
do not have to reveal their
views. CSCI 6448

Kenneth M. Anderson

Abbreviated Code Example

public class view extends concept {
public view() {}

public viewer getViewer() {
return myViewer;

}

É

private viewer myViewer;

}

CSCI 6448

Kenneth M. Anderson

Discussion

n A multiplicity of one
Ð private attribute

n A multiplicity of more than one
Ð vector, array, binary tree, etc.

Ð As dictated by the systemÕs functional reqs.

n Association Classes point to their members;
not the other way around
Ð This implies the need of a collection class that

points to instances of association classes

CSCI 6448

Kenneth M. Anderson

Scalability Considerations

n A straightforward OO design process
will not necessarily lead to a scalable
system

n Most likely lead to primitive operations
Ð Scalability requires compound operations

¥ especially in the presence of client-server
systems

CSCI 6448

Kenneth M. Anderson

Let me tell you a story...

n Feature request for Chimera:
Ð Define an import format that allows

anchors and links to be defined outside of
Chimera and then imported en masse

n Implemented Feature
Ð Defined an XML Document Type Definition

that allowed Chimera hyperwebs to be
imported and exported

CSCI 6448

Kenneth M. Anderson

Story, continued...

n Tested Feature
Ð Created 100KB XML file defining a

hyperweb of 1000s of anchors and links

n Released Feature
Ð Primary user created six 26MB XML files

defining 60,000 anchors and links (roughly
half-a-million anchors and links) in total!

n Back to the drawing board!

CSCI 6448

Kenneth M. Anderson

Should have known...

n Not necessarily true
Ð Relationship with user for 3+ years

Ð Chimera suited hypermedia needs of their
initial evaluation efforts with no problems

n Feature request was motivated by a
desire to automate the creation of links
for a single (!!) subsystem
Ð Scalability reqs. were revealed only then!

CSCI 6448

Kenneth M. Anderson

Story continued...

n Chimera Server displays the names of all the
links of a hyperweb
Vector linkIds = hyperweb.getLinks();

for I = 1 to linkIds.size() {
link L = linkIds.elementAt(I);

String name = L.getAttribute(ÒnameÓ);

-- Add name to scrolling list

}

n For 33,000 links, 1/3 complete in 8 hours!

CSCI 6448

Kenneth M. Anderson

Problem

n OO Design led to creation of
Ð concept - manages attributes

Ð link - manages anchors

Ð hyperweb - collects links

n Natural Algorithm uses primitives
Ð WhatÕs needed however is an operation

that gets all the links and names at once

Ð This implies new operations and classes!
CSCI 6448

Kenneth M. Anderson

Results

n The new compound operation displayed
33,000 link names in under 5 minutes;
288 times faster!

n Implications on design
Ð Identify the need for compound operations

via use-cases

Ð Add these operations and their associated
support classes early!

CSCI 6448

Kenneth M. Anderson

Managing Prototypes

n During design, a rapid prototype might
be needed
Ð Purpose

¥ Answer specific questions about the design

¥ The fewer the better! This reduced focus allows
the prototype to concentrate on one aspect only
and makes it easier for you to discard it!

¥ An end-user should use the prototype
Ð Make sure they understand the prototypeÕs purpose!

CSCI 6448

Kenneth M. Anderson

Prototypes, continued

n Manager should
Ð Assign at most two, preferably one, developer

should construct the prototype
¥ Design should continue in other areas during this phase

Ð Impose a deadline on prototype construction
¥ a week or two, no more!

Ð Schedule the demonstration with the end-user

Ð RAD Tools should be used
¥ the tight deadline should encourage their use!

CSCI 6448

Kenneth M. Anderson

Prototypes, continued

n UserÕs feedback must be recorded
Ð ÒThink-AloudÓ while using the prototype

Ð Interviews and surveys

Ð For user-interfaces, draw alternatives with
user still present

n Analyze data / record design decisions
Ð Decide if prototype needs to be iterated

n Archive everything for later use!
CSCI 6448

Kenneth M. Anderson

Beta software, introduction

n Types of software
Ð Developmental

¥ Internal builds, development team only

Ð Alpha
¥ Internal builds, select external users allowed

Ð Beta
¥ External builds, large group of external users

Ð Final Candidate, Golden Master, Release

n Beta ≠ Preview Releases
Ð Often an excuse to ship buggy software

CSCI 6448

Kenneth M. Anderson

Purpose of Betas

n Most often all functionality is created during
developmental and alpha builds of a system

n Beta software is used to test the software on
the widest range of hardware/software
configurations
Ð functionality is often frozen

Ð focus on finding and fixing bugs
¥ e.g. system works flawlessly on PowerMac G3, but

crashes on PowerMac 6100 with G3 upgrade card

CSCI 6448

Kenneth M. Anderson

Managing Betas

n Identify a time period for the beta
Ð Can be open-ended

Ð However better to set a time-limit or a
number-of-open bugs threshold

¥ e.g. beta is over when all category 1 and 2
bugs are fixed and there are less than 10
category 3 bugs

¥ these criteria are very context dependent!

CSCI 6448

Kenneth M. Anderson

Managing Betas, continued

n Private FTP site to distribute betas to external
users

n Mailing list or discussion forum for feedback
Ð Development team and SQA must participate!

n Bug Database records all feedback
Ð SQA classifies bugs, managers assign bugs

based on priority, developers fix

Ð Beta cycles should be short: 1-2 week granularity

CSCI 6448

Kenneth M. Anderson

Discussion

n A beta-cycle should not greatly impact design
Ð Freezing functionality helps to ensure this

n Instead Focus on
Ð stability, race-conditions, obscure configurations

n Record for the future
Ð Unanticipated ways that users use the software

Ð Requests for new functionality

n Note: Sequels are not necessarily good!
Ð Word 3000, now records barometric pressure!

CSCI 6448

Kenneth M. Anderson

Fredrick Brooks, 1975

n ...conceptual integrity is the most important
consideration in system design. It is better to
have a system omit certain anomalous
features [and] to reflect one set of design
ideas, than to have one that contains many
good but independent and uncoordinated
ideas

CSCI 6448

Kenneth M. Anderson

Fredrick Brooks, 20 years later

n A clean, elegant programming product must
presentÉ a coherent mental modelÉ
[Conceptual] integrityÉ is the most important
factor in ease of useÉ Today I am more
convinced than ever. Conceptual integrity is
central to product quality.

