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Goals of the Lecture

n Discuss a variety of implementation
issues
Ð Iterative Implementation Techniques

Ð Translating Associations

Ð Scalability Considerations

Ð Managing Rapid Prototypes and Beta
software
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Goal: Begin Implementation

n Situation
Ð Constructed

¥ Use cases, class diagrams, activity diagrams,
state diagrams, etc.

¥ Baseline architecture

¥ Implementation Plans

n Problem
Ð Where to start?
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From UML Distilled

n Plan Iterations around Use Cases
Ð Each iteration is a mini-project

¥ Perform analysis, design, coding, testing, and
integration

¥ End with user demo and system testing

Ð Repeat

n Each iteration is incremental, building
on previously constructed functionality
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Why more analysis and design?

n Why would A&D occur in each iteration?
Ð Moving down levels of abstraction

¥ The design should be complete at a logical
level, whatÕs left are more practical issues

¥ For instance, the details of a user-interface
class will eventually need to be specified

Ð screen layouts, interaction paradigms, etc.

Ð Interactions between use cases may reveal
ÒholesÓ in the logical design
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First Steps

n Identify the collaborations that realize
your systemÕs use cases
Ð Specify the structural and behavioral

aspects of each collaboration

n Create stubs for each class identified in
a collaboration
Ð Each class is defined in full but with empty

bodies for operations
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Example

package chimera.concepts;

import java.util.*;

public class link extends concept {

  public link() {}

  public Enumeration getAnchors() {

     return null;

  }

  public void addAnchor(anchor a) {}

  public void removeAnchor(anchor a) {}

  public int numberOfAnchors() {

     return 0;

  }

  private Vector anchors;

}

link

concept

- anchors: Vector

+ getAnchors(): Enumeration
+ addAnchor(anchor a)
+ removeAnchor(anchor a)
+ numberOfAnchors() : int

java::util

«import»
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Next

n Construct a Òstart systemÓ class
Ð All it does is create the objects needed for

your system, start up any required threads,
and place the system in its start state

n Compile, link, and execute
Ð Nothing should happen, but youÕll be

surprised at how many problems crop up
the first time you do this!
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Finally...

n Pick an operation in one of the classes
Ð Implement it

Ð Compile, link, execute...

n Repeat until Use Case is done

n Repeat until all Use Cases are done

n Pause for redesign and risk
management as needed
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DonÕt forget

n Comments
Ð take advantage of tools like JavaDoc

n Testing
Ð Kent BeckÕs rule of thumb

¥ A developer should write at least as much test
code as production code

Ð Archive the tests and use them for
regression testing
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DonÕt forget, continued

n Metrics and Planning
Ð Record how long it took you to do a task

Ð Update the master plan with the teamÕs
accomplishments

Ð See <http://psp.colorado.edu/Visitors.html>
for links to information on the importance of
metrics at an individual level
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Mapping Class Diagrams and
Associations

n An association implies something about
the interface of its classes when
implemented
Ð In particular, an interface is required that

allows the association to be navigated

Ð A designer can indicate the navigation
responsibilities of a class with arrowheads
on associations in UML diagrams
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Example
Viewer Object

View

AnchorLink
*

**

**

navigability

The source is
obligated to
provide an interface
to the target.

Thus views must reveal
their viewers, but viewers
do not have to reveal their
views. CSCI 6448
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Abbreviated Code Example

public class view extends concept {
public view() {}

public viewer getViewer() {
return myViewer;

}

É

private viewer myViewer;

}
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Discussion

n A multiplicity of one
Ð private attribute

n A multiplicity of more than one
Ð vector, array, binary tree, etc.

Ð As dictated by the systemÕs functional reqs.

n Association Classes point to their members;
not the other way around
Ð This implies the need of a collection class that

points to instances of association classes
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Scalability Considerations

n A straightforward OO design process
will not necessarily lead to a scalable
system

n Most likely lead to primitive operations
Ð Scalability requires compound operations

¥ especially in the presence of client-server
systems
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Let me tell you a story...

n Feature request for Chimera:
Ð Define an import format that allows

anchors and links to be defined outside of
Chimera and then imported en masse

n Implemented Feature
Ð Defined an XML Document Type Definition

that allowed Chimera hyperwebs to be
imported and exported
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Story, continued...

n Tested Feature
Ð Created 100KB XML file defining a

hyperweb of 1000s of anchors and links

n Released Feature
Ð Primary user created six 26MB XML files

defining 60,000 anchors and links (roughly
half-a-million anchors and links) in total!

n Back to the drawing board!
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Should have known...

n Not necessarily true
Ð Relationship with user for 3+ years

Ð Chimera suited hypermedia needs of their
initial evaluation efforts with no problems

n Feature request was motivated by a
desire to automate the creation of links
for a single (!!) subsystem
Ð Scalability reqs. were revealed only then!
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Story continued...

n Chimera Server displays the names of all the
links of a hyperweb
Vector linkIds = hyperweb.getLinks();

for I = 1 to linkIds.size() {
link L = linkIds.elementAt(I);

String name = L.getAttribute(ÒnameÓ);

-- Add name to scrolling list

}

n For 33,000 links, 1/3 complete in 8 hours!
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Problem

n OO Design led to creation of
Ð concept - manages attributes

Ð link - manages anchors

Ð hyperweb - collects links

n Natural Algorithm uses primitives
Ð WhatÕs needed however is an operation

that gets all the links and names at once

Ð This implies new operations and classes!
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Results

n The new compound operation displayed
33,000 link names in under 5 minutes;
288 times faster!

n Implications on design
Ð Identify the need for compound operations

via use-cases

Ð Add these operations and their associated
support classes early!
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Managing Prototypes

n During design, a rapid prototype might
be needed
Ð Purpose

¥ Answer specific questions about the design

¥ The fewer the better! This reduced focus allows
the prototype to concentrate on one aspect only
and makes it easier for you to discard it!

¥ An end-user should use the prototype
Ð Make sure they understand the prototypeÕs purpose!
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Prototypes, continued

n Manager should
Ð Assign at most two, preferably one, developer

should construct the prototype
¥ Design should continue in other areas during this phase

Ð Impose a deadline on prototype construction
¥ a week or two, no more!

Ð Schedule the demonstration with the end-user

Ð RAD Tools should be used
¥ the tight deadline should encourage their use!
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Prototypes, continued

n UserÕs feedback must be recorded
Ð ÒThink-AloudÓ while using the prototype

Ð Interviews and surveys

Ð For user-interfaces, draw alternatives with
user still present

n Analyze data / record design decisions
Ð Decide if prototype needs to be iterated

n Archive everything for later use!
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Beta software, introduction

n Types of software
Ð Developmental

¥ Internal builds, development team only

Ð Alpha
¥ Internal builds, select external users allowed

Ð Beta
¥ External builds, large group of external users

Ð Final Candidate, Golden Master, Release

n Beta ≠ Preview Releases
Ð Often an excuse to ship buggy software
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Purpose of Betas

n Most often all functionality is created during
developmental and alpha builds of a system

n Beta software is used to test the software on
the widest range of hardware/software
configurations
Ð functionality is often frozen

Ð focus on finding and fixing bugs
¥ e.g. system works flawlessly on PowerMac G3, but

crashes on PowerMac 6100 with G3 upgrade card
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Managing Betas

n Identify a time period for the beta
Ð Can be open-ended

Ð However better to set a time-limit or a
number-of-open bugs threshold

¥ e.g. beta is over when all category 1 and 2
bugs are fixed and there are less than 10
category 3 bugs

¥ these criteria are very context dependent!
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Managing Betas, continued

n Private FTP site to distribute betas to external
users

n Mailing list or discussion forum for feedback
Ð Development team and SQA must participate!

n Bug Database records all feedback
Ð SQA classifies bugs, managers assign bugs

based on priority, developers fix

Ð Beta cycles should be short: 1-2 week granularity
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Discussion

n A beta-cycle should not greatly impact design
Ð Freezing functionality helps to ensure this

n Instead Focus on
Ð stability, race-conditions, obscure configurations

n Record for the future
Ð Unanticipated ways that users use the software

Ð Requests for new functionality

n Note: Sequels are not necessarily good!
Ð Word 3000, now records barometric pressure!
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Fredrick Brooks, 1975

n ...conceptual integrity is the most important
consideration in system design. It is better to
have a system omit certain anomalous
features [and] to reflect one set of design
ideas, than to have one that contains many
good but independent and uncoordinated
ideas
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Fredrick Brooks, 20 years later

n A clean, elegant programming product must
presentÉ a coherent mental modelÉ
[Conceptual] integrityÉ is the most important
factor in ease of useÉ Today I am more
convinced than ever. Conceptual integrity is
central to product quality.


