UML Implementation Diagrams
Object-Oriented Analysis and Design

CSCI 6448 - Fall 1998
Kenneth M. Anderson

Goals of the Lecture

m Present UML Diagrams useful for
implementation
m Provide examples

m Next Lecture
— A variety of topics on mapping from design

into implementation
« translating associations into operations,

_— scalability considerations, etc.

CSCI 6448
”| ” Kenneth M. Anderson

|
L Overview

u{ | = Package Diagrams
— Systems and Subsystems

= m Component Diagrams
L m Deployment Diagrams
m Collaborations

CSCI 6448
Hl | Kenneth M. Anderson

I\
. Packages

m A package is a general-purpose mechanism
: for organizing elements into groups
— Packages are rendered as tabbed folders
‘ — The visibility of elements can be specified
— Elements are semantically related for a single
purpose
| ‘ m Packages are thus conducive to providing
groups which are highly cohesive, loosely
— coupled, and access tightly controlled

CSCI 6448
Kenneth M. Anderson

Package Example Information on Packages

Chimera

m Packages can contain

— packages, classes, interfaces, components,
nodes, collaborations, use cases, etc.

ChimeraServe

| API
+csAP| m Containment is a composite relationship
+hwsAPI — The element belongs to the package
+hwmAPI « Delete the package, you delete its elements
Concept -eventGenerator ‘

CSCI 6448 CSCI 6448
Kenneth M. Anderson ”| ‘ Kenneth M. Anderson

More Information on Packages Accessing Package Elements

Productinfo Client|
m Each package defines a namespace +name «import» |+ OrderForm
— Names of elements (of a particular type) must be + description DI — + TrackingForm
unique within a package *image g - Order
* e.g. you can have a class named Timer and an interface - GUI"WIn ow
named Timer but you can’t have two classes both named Import and Access specify that one
Timer r «aCccess» package makes use of another.
— its recommended that you keep all names unique GUI | y

Import brings the public elements of
the target package into the source’s

— Nested names use the following notation + Window namespace.
+ Chimera::API::csAPI + Form

regardless of type, however

These relationships are not transitivd
EventHandler and only operate in one direction.

CSCI 6448 CSCI 6448
”| | Kenneth M. Anderson ”| ‘ Kenneth M. Anderson

|
’ Generalization m

m . Generalization Example
GUI
u{ m Generalization relationships are used to u{ ” I‘é‘g:‘n‘iow
specify families of packages # EventHandler
= — All rules of inheritance apply |
H“ \ * Public and Protected members are available in H“ \ /
chilldren, and children can override members of —‘—\ WindowsGUI|
their parents and add new elements
H ‘ + Substitutability can also be used; a child H ‘ + GUI::Window
package can be used in the place of one of its - MacGUI + Form
parents + VBForm

CSCI 6448 CSCI 6448
H| ‘ Kenneth M. Anderson ”| ” Kenneth M. Anderson

|
’ Standard Package Stereotypes Jm Systems and Subsystems

”{ m facade “{ m A system is the thing being modeled and
— A package that is a view onto some other package developed to accomplish some task
B = framework | — It contains all its models such as classes, use
cases, activity diagrams, etc.
m A subsystem is simply a part of a system

— used to decompose a complex system into nearly
independent parts

H“ ‘ — A package consisting mainly of patterns H“ \

m stub
— A package that serves as a proxy for the public H

contents of another package
t bsvst — typically has high cohesion collecting everything
m Sysiem, subsystem L needed to accomplish a particular subtask or goal

CSCI 6448 CSCI 6448
Hl ‘ Kenneth M. Anderson Kenneth M. Anderson

m Components @ Components vs. Classes

m A component is a physical and replaceable ‘ m Classes are logical abstractions

- part of a system that conforms to and - — Components are physical objects that can be

| provides the realization of a set of interfaces | deployed

H“ ‘ — Rendered as a rectangle with tabs H“ ‘ m Classes may have attributes and operations
m Example Components — Components typically only have operations

— dynamically-linked libraries, jar files, database defined by their associated interfaces
| tables, software components (JavaBeans, | ‘ m Components are at a different level of

CORBA, and DCOM) abstraction; they represent the physical
packaging of classes

CSCI 6448 CSCI 6448
H| ” Kenneth M. Anderson ”| ” Kenneth M. Anderson

| | -m
|1 . Components and Interfaces ”1 . More on components

m Components are physical
m Components are replaceable

ImageObserver m Components are part of a system
— They can be thought of as building blocks

m Components conform to and provide the
realization of a set of interfaces

2

| | image.clasg component.clas

Component.class exports the interface, image.class importg it.
H A component can import and export many different interfadges. H ‘
The interface breaks the dependency between the two -

components; they can change independently as long as thgy
maintain their obligations with respect to the interface. _\

CSCI 6448

Kenneth M. Anderson

CSCI 6448

Kenneth M. Anderson

Standard Component Stereotypes

m executable
— can be executed on a node
library
— static or dynamic object library
m table
— database table
m file
— source code or data
m document
— catch-all for other types of documents

CSCI 6448

Kenneth M. Anderson

- dlog.dll
animator.class 9

-
‘ Executable Component Example

ST S i |

\\‘ ‘\\\\
M ‘ render.dll .
raytrce.dll ‘ g Wrfrme.dll

- m =

CSCI 6448
” ‘ Kenneth M. Anderson

Deployment Diagrams

m Document the nodes of a system

m A node is a physical element that represents
a computational resource
— typically having memory and processing capability
— Nodes model the topology of the hardware used
by a system

* A node represents (typically) a processor or device
(sensor, modem, etc.)

CSCI 6448

Kenneth M. Anderson

‘ Chimera Deployment
W

‘ bigtime
‘ hwmServer

H | _—" | hwsServer

anchor

chimeraServer
jimage serl

. et
CSCI 6448
” ‘ Kenneth M. Anderson

Nodes vs. Components

m Components participate in the execution of a

— Nodes are things that execute components
m Components physically package logical
elements

— Nodes represent the physical deployment of
components

Common uses for Deployment
Diagrams

m To model embedded systems

— Nodes can represent physical devices and show
how components access those devices

m To model client/server systems
— See previous example
m To model fully distributed systems

— Including adaptive systems
« for example, agents that migrate from node to node

More information on Nodes

m Nodes (as well as components) can
participate in dependency,
generalization, and association
relationships

m They can be nested, have instances,
participate in interactions, etc.

m Nodes can also have attributes and
operations

Collaborations

m A collaboration is a society of classes,
interfaces, and other elements that work
together to provide a cooperative behavior

— A collaboration consists of a structural part and a
behavioral part
+ Class diagrams specify the former
* Interaction diagrams specify the latter

— Rendered as an ellipse with dashed lines

| -
L Uses for collaborations m ‘ Collaborations, continued

u{ }‘ m Modeling a mechanism |‘ m Elements can appear in multiple

— Show me all the classes and activities collaborations
= involved with client-server communication = — A collaboration can be thought of as a set
M = Modeling a use case | | of pointers into a system’s packages
— Show me all the classes and interactions to — Sort of like the perspective mechanism’s
[] support the process order use case [] notion of a virtual copy
= " Modeling an operation o
- — Show me how ray tracing is accomplished -
||_’| Kenneth M. Anderson ||_‘ Kenneth M. Anderson
-—
|‘ ’ \| ’
m Example @ Structural Aspect
clientf----------s-moomooooooo- server
”{ }‘ chimeraServer |‘ ” : L
«actor» ; listener,
;m Communicate | . ’
with Other M ‘ api [--mmmmmm e e handler

Servers \i

message

||
| | S
Communication/,x" t reques event

a4 T) |] reply
CSCI 6448 CSCI 6448
”l | Kenneth M. Anderson ”| ‘ Kenneth M. Anderson

| |
|‘ . Behavioral Aspect

csAPI:api listener csNativeHandler:handler
: «create»] :
"I reques
SendRe:quest(r) - HandleRequest(r)
' g «create»
| reply

‘ 5 __SendReply(r)

) SendReply())
|) § |
| ' | | |
|

CSCl 6448

Kenneth M. Anderson

