
UML Implementation Diagrams

Object-Oriented Analysis and Design

CSCI 6448 - Fall 1998

Kenneth M. Anderson

CSCI 6448

Kenneth M. Anderson

Goals of the Lecture

n Present UML Diagrams useful for
implementation

n Provide examples

n Next Lecture
Ð A variety of topics on mapping from design

into implementation
¥ translating associations into operations,

scalability considerations, etc.

CSCI 6448

Kenneth M. Anderson

Overview

n Package Diagrams
Ð Systems and Subsystems

n Component Diagrams

n Deployment Diagrams

n Collaborations

CSCI 6448

Kenneth M. Anderson

Packages

n A package is a general-purpose mechanism
for organizing elements into groups
Ð Packages are rendered as tabbed folders

Ð The visibility of elements can be specified

Ð Elements are semantically related for a single
purpose

n Packages are thus conducive to providing
groups which are highly cohesive, loosely
coupled, and access tightly controlled

CSCI 6448

Kenneth M. Anderson

Chimera

Package Example

Concept

+csAPI
+hwsAPI
+hwmAPI
-eventGenerator

APIChimeraServer

CSCI 6448

Kenneth M. Anderson

Information on Packages

n Packages can contain
Ð packages, classes, interfaces, components,

nodes, collaborations, use cases, etc.

n Containment is a composite relationship
Ð The element belongs to the package

¥ Delete the package, you delete its elements

CSCI 6448

Kenneth M. Anderson

More Information on Packages

n Each package defines a namespace
Ð Names of elements (of a particular type) must be

unique within a package
¥ e.g. you can have a class named Timer and an interface

named Timer but you canÕt have two classes both named
Timer

Ð its recommended that you keep all names unique
regardless of type, however

Ð Nested names use the following notation
¥ Chimera::API::csAPI

CSCI 6448

Kenneth M. Anderson

Accessing Package Elements

+ name
+ description
+ image
- GUI::Window

ProductInfo

+ OrderForm
+ TrackingForm
- Order

Client

+ Window
+ Form
EventHandler

GUI

«import»

«access»
Import and Access specify that one
package makes use of another.

Import brings the public elements of
the target package into the source’s
namespace.

These relationships are not transitive
and only operate in one direction.

CSCI 6448

Kenneth M. Anderson

Generalization

n Generalization relationships are used to
specify families of packages
Ð All rules of inheritance apply

¥ Public and Protected members are available in
children, and children can override members of
their parents and add new elements

¥ Substitutability can also be used; a child
package can be used in the place of one of its
parents

CSCI 6448

Kenneth M. Anderson

Generalization Example

+ Window
+ Form
EventHandler

GUI

+ GUI::Window
+ Form
+ VBForm

WindowsGUI

MacGUI

CSCI 6448

Kenneth M. Anderson

Standard Package Stereotypes

n facade
Ð A package that is a view onto some other package

n framework
Ð A package consisting mainly of patterns

n stub
Ð A package that serves as a proxy for the public

contents of another package

n system, subsystem

CSCI 6448

Kenneth M. Anderson

Systems and Subsystems

n A system is the thing being modeled and
developed to accomplish some task
Ð It contains all its models such as classes, use

cases, activity diagrams, etc.

n A subsystem is simply a part of a system
Ð used to decompose a complex system into nearly

independent parts

Ð typically has high cohesion collecting everything
needed to accomplish a particular subtask or goal

CSCI 6448

Kenneth M. Anderson

Components

n A component is a physical and replaceable
part of a system that conforms to and
provides the realization of a set of interfaces
Ð Rendered as a rectangle with tabs

n Example Components
Ð dynamically-linked libraries, jar files, database

tables, software components (JavaBeans,
CORBA, and DCOM)

CSCI 6448

Kenneth M. Anderson

Components vs. Classes

n Classes are logical abstractions
Ð Components are physical objects that can be

deployed

n Classes may have attributes and operations
Ð Components typically only have operations

defined by their associated interfaces

n Components are at a different level of
abstraction; they represent the physical
packaging of classes

CSCI 6448

Kenneth M. Anderson

Components and Interfaces

component.classimage.class

ImageObserver

Component.class exports the interface, image.class imports it.

A component can import and export many different interfaces.

The interface breaks the dependency between the two
components; they can change independently as long as they
maintain their obligations with respect to the interface.

CSCI 6448

Kenneth M. Anderson

More on components

n Components are physical

n Components are replaceable

n Components are part of a system
Ð They can be thought of as building blocks

n Components conform to and provide the
realization of a set of interfaces

CSCI 6448

Kenneth M. Anderson

Standard Component Stereotypes

n executable
Ð can be executed on a node

n library
Ð static or dynamic object library

n table
Ð database table

n file
Ð source code or data

n document
Ð catch-all for other types of documents

CSCI 6448

Kenneth M. Anderson

Executable Component Example
animator.class

dlog.dll

render.dll
raytrce.dll wrfrme.dll

CSCI 6448

Kenneth M. Anderson

Deployment Diagrams

n Document the nodes of a system

n A node is a physical element that represents
a computational resource
Ð typically having memory and processing capability

Ð Nodes model the topology of the hardware used
by a system

¥ A node represents (typically) a processor or device
(sensor, modem, etc.)

CSCI 6448

Kenneth M. Anderson

Chimera Deployment

anchor

bigtime

serl
chimeraServer
jimage

hwmServer
hwsServer

mySQL

CSCI 6448

Kenneth M. Anderson

Nodes vs. Components

n Components participate in the execution of a
system
Ð Nodes are things that execute components

n Components physically package logical
elements
Ð Nodes represent the physical deployment of

components

CSCI 6448

Kenneth M. Anderson

More information on Nodes

n Nodes (as well as components) can
participate in dependency,
generalization, and association
relationships

n They can be nested, have instances,
participate in interactions, etc.

n Nodes can also have attributes and
operations

CSCI 6448

Kenneth M. Anderson

Common uses for Deployment
Diagrams

n To model embedded systems
Ð Nodes can represent physical devices and show

how components access those devices

n To model client/server systems
Ð See previous example

n To model fully distributed systems
Ð Including adaptive systems

¥ for example, agents that migrate from node to node

CSCI 6448

Kenneth M. Anderson

Collaborations

n A collaboration is a society of classes,
interfaces, and other elements that work
together to provide a cooperative behavior
Ð A collaboration consists of a structural part and a

behavioral part
¥ Class diagrams specify the former

¥ Interaction diagrams specify the latter

Ð Rendered as an ellipse with dashed lines

CSCI 6448

Kenneth M. Anderson

Uses for collaborations

n Modeling a mechanism
Ð Show me all the classes and activities

involved with client-server communication

n Modeling a use case
Ð Show me all the classes and interactions to

support the process order use case

n Modeling an operation
Ð Show me how ray tracing is accomplished

CSCI 6448

Kenneth M. Anderson

Collaborations, continued

n Elements can appear in multiple
collaborations
Ð A collaboration can be thought of as a set

of pointers into a systemÕs packages

Ð Sort of like the perspective mechanismÕs
notion of a virtual copy

CSCI 6448

Kenneth M. Anderson

Example

chimeraServer
«actor»

Communicate
with Other

Servers

Client-Server
Communication

CSCI 6448

Kenneth M. Anderson

Structural Aspect

api handler

client server

listener

request

reply

event

*

message

*

*
*

CSCI 6448

Kenneth M. Anderson

Behavioral Aspect

csAPI:api csNativeHandler:handler:listener

reply

«create»

SendRequest(r)

request

HandleRequest(r)

«create»

SendReply(r)

SendReply(r)

