
OO Programming Principles

Object-Oriented Analysis and Design

CSCI 6448 - Fall 1998

Kenneth M. Anderson

CSCI 6448

Kenneth M. Anderson

Goals of the Lecture

n Discuss OO Programming Principles
Ð Messages

Ð Information Hiding

Ð Classes and Instances

Ð Inheritance

Ð Polymorphism

n Present examples of these concepts

CSCI 6448

Kenneth M. Anderson

OO Programming Languages

n Support OO Analysis & Design
Ð The ability to create new types (classes) allows

the solution of a problem be expressed in the
vocabulary of the problem domain

n Provide language features that directly
support OO principles
Ð i.e. the topics covered in this class

n Simula (1967), Smalltalk, C++, Java,
Objective-C, Oberon, (many others)...

CSCI 6448

Kenneth M. Anderson

Alan KayÕs Basic Principles

n Everything is an object

n Computation is performed by objects passing
messages to each other, requesting actions
Ð A message is a request for action plus parameters

n Each object has its own memory
Ð Consisting of other objects

n Each object is an instance of a class



CSCI 6448

Kenneth M. Anderson

Basic Principles, continued

n The class is the repository for behavior
associated with an object
Ð Each object of a class can respond to the same

set of messages

n Classes are organized into a singly rooted
tree structure
Ð Known as the inheritance hierarchy

Ð Memory and behavior associated with a parent
class are available to its children

CSCI 6448

Kenneth M. Anderson

Message Passing

n Objects request actions from other objects
Ð These actions are known as operations

Ð Example
¥ Send flowers to this address

n Methods are implementations of operations
Ð Each class can provide a method for each

operation or reuse one provided by its ancestors
¥ Florist: Send flowers to this address

¥ Assistant: Send flowers to this address

¥ The same results, different methods

CSCI 6448

Kenneth M. Anderson

Information Hiding

n The object that makes a request should not
know or care how the request is fulfilled
Ð When I ask for flowers to be delivered, I donÕt care

how its accomplished, just that the flowers get
delivered

Ð In general, well designed information hiding leads
to lower coupling between objects

CSCI 6448

Kenneth M. Anderson

Is this information hiding?

public class link {
public anchor[] anchors; -- Java array

public String name;

}

É

link l = new link();

l.name = ÒKenÕs LinkÓ;

anchor a = l.anchors[2];



CSCI 6448

Kenneth M. Anderson

Access Control (Quick Review)

n private String name;
Ð not visible to clients;

n protected String name;
Ð not visible to clients; visible to subtypes

n public String name;
Ð visible to all classes

n String name;
Ð visible to all classes within the same package

¥ (Java only; C++ defaults to private (I think!))

CSCI 6448

Kenneth M. Anderson

What about this?

public class link {
private anchor[] anchors;

private String name;

}

É

Link l = new link();

l.name = ÒKenÕs LinkÓ; -- not allowed!

anchor a = l.anchors[2]; -- neither is this

CSCI 6448

Kenneth M. Anderson

Getting better...

public class link {
private anchor[] anchors;

private String name;

public void setName(String name);

public String getName();

public anchor[] getAnchors();

Public void addAnchor(anchor a);

Public void removeAnchor(anchor a);

}
CSCI 6448

Kenneth M. Anderson

Why is this better?

n The link class has gained control over its
attributes
Ð Clients can no longer reach in and arbitrarily

change the linkÕs state

Ð The class can now enforce policies such as
¥ Legal formats for link names

¥ Versioning of values

¥ Maximum number of anchors, etc.



CSCI 6448

Kenneth M. Anderson

How might it be improved?

n The class has exposed the implementation of
how it stores anchors
Ð public anchors[] getAnchors()

n In fact, with Java, the operation getAnchors()
returns a reference to the supposedly private
anchors attribute!

n It would be better to hide the implementation
method from the outside

CSCI 6448

Kenneth M. Anderson

Getting better...

public class link {
private anchor[] anchors;

private String name;

public void setName(String name);

public String getName();

public Enumeration getAnchors();

Public void addAnchor(anchor a);

Public void removeAnchor(anchor a);

}

CSCI 6448

Kenneth M. Anderson

Interfaces

n Enumeration is a pre-defined Java interface

n An interface simply defines operations (and
constants), it provides no implementation

n Objects implement interfaces providing an
implementation for the standard interface

public interface Enumeration {
public boolean hasMoreElements()

public Object nextElement()

}

CSCI 6448

Kenneth M. Anderson

UML Notation for Interfaces

Enumeration
«interface»

nextElement()
hasMoreElements()

Enumeration

AnchorIterator

(Sometimes called Lollipops)



CSCI 6448

Kenneth M. Anderson

Benefits of information hiding

n With the implementation details hidden
Ð We can now change the details at will!

¥ Replace the array with a linked list, binary tree,
hash table, etc.

¥ Or, create a connection with a database and
issue an SQL query!

Ð As long as the interface doesnÕt change
¥ Clients are never effected

¥ They donÕt even have to be recompiled!

CSCI 6448

Kenneth M. Anderson

Inheritance

n Inheritance is an implementation of the
abstract concept of generalization

n Subtypes inherit attributes and operations
from supertypes

n In C++ and Java, inheritance allows classes
to share both interfaces and implementations
Ð Interfaces allow the sharing of interfaces without

sharing implementations

CSCI 6448

Kenneth M. Anderson

Example (The Famous oneÉ)
Shape

draw(); getId();
erase()

Circle

draw()
erase()

Square

draw()
erase()

Line

draw()
erase()

Each subtype overrides the methods of the draw() and
erase() methods provided by Shape. getId()
is reused by the subtypes however. id is hidden.

private int id;

CSCI 6448

Kenneth M. Anderson

Does this code work?

public void update(Shape s) {
s.erase();

s.draw();

}

É

Circle c = new Circle();

Square s = new Square();

Line l = new Line();

update(c); update(s); update(l)



CSCI 6448

Kenneth M. Anderson

How? Polymorphism

n Roughly translated: ÒMany formsÓ

n Substitutability
Ð A subtype can be used in place of its parent

n Dynamic Binding
Ð The method used for an operation is not known at

compile time

n Thus, update calls the ÒrightÓ method based
on the type of the instance being pointed at
by a variable

CSCI 6448

Kenneth M. Anderson

Benefits of Polymorphism

n Reusability
Ð The update algorithm will work on any

shape passed to it

n Extensibility
Ð We can freely create new subtypes for

Shape and never have to modify the
update algorithm


