
Object Constraint Language

Object-Oriented Analysis and Design

CSCI 6448 - Fall 1998

Kenneth M. Anderson

CSCI 6448

Kenneth M. Anderson

Goals of the Lecture

n Present the Object Constraint Language
Ð As best as possible, with the limited

information available from UML in a
Nutshell and the Rational Website

n The official reference for the OCL will be
the forthcoming Addison-Wesley book:
Ð The Unified Modeling Language Reference

Manual (expected mid-December)

CSCI 6448

Kenneth M. Anderson

Additional Reference

n The Object Constraint Language
Ð Precise Modeling with UML

Jos Warmer

Anneke Kleppe

Addison-Wesley: ISBN 0-201-37940-6

Just published!

CSCI 6448

Kenneth M. Anderson

Constraints: A review

n A constraint is a restriction on one or
more values of (part of) an object-
oriented model or system
Ð Supports design by contract

¥ Operations can be provided pre- and post-
conditions

¥ These conditions can be specified using
constraints

CSCI 6448

Kenneth M. Anderson

Constraints Review continued

n A precondition must be true at the moment
that an operation is executed

n A postcondition must be true at the moment
the operation finishes executing

n A different type of constraint is an invariant
Ð An invariant specifies a condition that must always

be true of its associated elements

Ð This contrasts with pre- and post-conditions that
only need to hold before and after the execution of
a single operation

CSCI 6448

Kenneth M. Anderson

Advantages of Constraints

n Better Documentation
Ð The semantics are kept close to the model they

constrain

n Improved Precision
Ð Constraints cannot be interpreted differently by

different people

n Communication without Misunderstanding

CSCI 6448

Kenneth M. Anderson

Declarative or Operational

n Two types of interpretations

n Declarative
Ð States what must be true, not what must be done

n Operational
Ð Breaking a constraint triggers an operation

n For example, in Eiffel, if a constraint is broken
an exception is thrown

n UML adopts a declarative style of constraints

CSCI 6448

Kenneth M. Anderson

Advantages of Declarative style

n Constraints have no side-effects
Ð The state of a system does not change when a

constraint is evaluated

n It separates the specification of a constraint
from the response required if a constraint is
broken

n Constraints should be stable; actions may
change over time

n Atomicity requirements can be avoided

CSCI 6448

Kenneth M. Anderson

Object Constraint Language

n OCL is a pure expression language
Ð It can not modify the state of a model

Ð It can however specify a state that is
required by a pre- or post-condition

Ð An OCL expression simply states a
requirement that must be met in order to
consider an instantiation of the model to be
valid

CSCI 6448

Kenneth M. Anderson

OCL, continued.

n OCL is not a programming language
Ð It can not be used to invoke a process

Ð It can not be used to code program logic

Ð It can not be used to specify flow of control

n OCL is a typed-language
Ð Each expression has a type

Ð Any UML Classifier can function as an
OCL type: class, use case, actor, etc.

CSCI 6448

Kenneth M. Anderson

OCL, continued

n OCL was developed at IBM in 1995

n It was submitted into the Object Management
GroupÕs standards efforts in 1996

n It was merged into the UML standard in 1997
and became an official OMG standard in
November 1997 (UML 1.1)

n Note: the UML metamodelÕs semantics are
specified using OCL

CSCI 6448

Kenneth M. Anderson

Uses for the OCL

n To specify invariants on classes

n To specify type invariants for stereotypes.

n To describe pre- and post-conditions on
operations and methods

n To describe guards

n To navigate associations

n To specify constraints on operations

CSCI 6448

Kenneth M. Anderson

OCL Building Blocks

n The basic building blocks of OCL are
Ð Objects

Ð Object properties

n Each object can have a type
Ð Predefined Types

¥ Basic types

¥ Collections

Ð User-defined model types
CSCI 6448

Kenneth M. Anderson

OCL Types

n Basic Types
Ð Integer, Real, String, and Boolean

n Collection Types
Ð Collection, Set, Bag, and Sequence

n Model Types
Ð Customer, Perspective, Drafter, etc.

Ð Also enumeration types

CSCI 6448

Kenneth M. Anderson

Expressions and Constraints

n Not all expressions are constraints

n For instance
Ð Ò1+3Ó is a valid expression

Ð Its result is Ò4Ó and its return type is
ÒIntegerÓ

n OCL constraint
Ð An OCL Expression that returns a Boolean

¥ e.g. {person.age > 1 + 3}
CSCI 6448

Kenneth M. Anderson

Context of an Expression

n Each OCL expression must have a
context
Ð The context is the model element to which

the constraint is attached

Ð This element is referred to as the
Òcontextual elementÓ

Perspective

objects->notEmpty()

CSCI 6448

Kenneth M. Anderson

Context of an Invariant

n The context of an invariant is always a
type (class, interface, attribute, etc.)

Customer

Name = ÒEdwardÓ

n Specifies that all Customer objects must
have the name of Edward

n Not a very useful invariant!

CSCI 6448

Kenneth M. Anderson

Context of Pre- and Post-
Conditions

n The context of pre- and post-conditions
is always an operation or method

AddAnchor(L : Link, A : Anchor)

pre: not L.anchors->Includes(A)

post: L.anchors->Includes(A)

CSCI 6448

Kenneth M. Anderson

Example in a Class Diagram

Link

addAnchor(…)

«precondition»
not anchors.contains(A)

anchors: Set
Id: Integer

«postcondition»
anchors.contains(A)

«invariant»
self.Id > 0

{frozen}

CSCI 6448

Kenneth M. Anderson

Keywords for Post-Conditions

n @pre
Ð Attach this to an element to refer to the value of

that element in the precondition

Ð {age = age@pre + 1}

n result
Ð Use this keyword to place a constraint on the

return value of an operation

Ð This does not define the value, it just constrains it

Ð {result < 100 * input@pre} or {result = self.age}

CSCI 6448

Kenneth M. Anderson

The self keyword

n The self keyword is used to refer to the
contextual element of an OCL constraint

n It can be omitted when the context is
clear

n An example where its needed

Container

not Container->contains(self)

CSCI 6448

Kenneth M. Anderson

Navigating associations

n If A is related to B and A plays the role
of x and B plays the role of y
Ð Then, a constraint on A can refer to B

¥ {self.y = É} or {self.b = É}

n If the multiplicity of B is greater than one
Ð Then the type of self.y or self.b is a

collection

CSCI 6448

Kenneth M. Anderson

Navigating Association Classes

n An association class can reference either end
of its association via the same rules
described on the previous slide

n However, the type of a reference is always an
instance, never a collection, regardless of the
multiplicities of the associated association

n This is because an instance of an association
class is associated with only a single instance
of an association

CSCI 6448

Kenneth M. Anderson

Example

A B

C

x y
*

{self.y.oclIsKindOf(Collection) = true}

{self.y.oclType = B}

CSCI 6448

Kenneth M. Anderson

Boolean Operations

n or, and, xor, not, =, <>, implies
if a then b else bÕ endif

n Examples
Person

Self.age > 17 implies self.canVote() = true

Customer

title = (if isMale = true then ÒMr.Ó else ÒMs.Ó endif)

CSCI 6448

Kenneth M. Anderson

Semantics of Implies

n a implies b

n Returns true
Ð If a is false (a falsity can imply anything)

Ð Or a is true and b is true

n Returns false
Ð If a is true and b is false

CSCI 6448

Kenneth M. Anderson

Integer and Real Operations

n =, <>

n <, >, <=, >=

n +, -, *, /

n mod, div, abs

n max, min

n round, floor

CSCI 6448

Kenneth M. Anderson

String Operations

n concat()

n size

n toLower()

n toUpper()

n substring()

n =, <>

n ÔKenÕ.size = 3

CSCI 6448

Kenneth M. Anderson

Enumerations

n Enumerated Types can be defined
Ð enum { blue, red, green, yellow }

Ð operations: =, <>

n In order to avoid name conflicts
Ð enumerated types are referenced like this:

¥ #blue

Customer

(gender = #male) implies (title = ÒMr.Ó)
CSCI 6448

Kenneth M. Anderson

Collections

n The OCL has one collection type and
three subclasses
Ð Set - unordered set of items, no duplicates

Ð Bag - set of items, duplicates allowed

Ð Sequence - ordered Bag

n There are an amazing number of
operations defined for these four types
Ð http://www.rational.com/uml/html/ocl/ocl_spe7.html

CSCI 6448

Kenneth M. Anderson

Collection Operations

n size

n count(object)

n includes(object)

n includesAll(Col.)

n isEmpty

n iterate(expression)

n eum()

n exists(expression)

n forAll(expression)

n notEmpty

A collection operation is always invoked using the
arrow operator: anchors->isEmpty()

CSCI 6448

Kenneth M. Anderson

Other Operations

n Set Operations
Ð equals, minus

Ð symmetricDifference
Ð union()

Ð intersection

Ð asSequence()

Ð asBag()

Ð ...

n Sequence Ops
Ð append()

Ð prepend()

Ð subSequence()

Ð at()

Ð first

Ð last

Ð ...

CSCI 6448

Kenneth M. Anderson

Iteration functions

n select(expression) - returns collection

Hyperweb
link->select(L: Link | L.anchors->size() = 2)

(Finds all links with exactly two anchors)

n reject(expression)
Ð Opposite of select finds all members where

the expression evaluates to false

CSCI 6448

Kenneth M. Anderson

Iteration Functions continued

n collect(expression)
Ð The expression computes a value for each

element of a collection. The values are returned in
a collection

n forAll(expression)
Ð Specifies that the expression holds for each

member of the collection

n Exists(expression)
Ð The expression is true of at least one element of

the collection

CSCI 6448

Kenneth M. Anderson

Example

Person
Company

employee employer
age

{employee->forAll(p: Person | p.age >= 18 and p.age <= 65) }

Meaning: A company’s employees all must be between the
ages of 18 and 65.

Syntax for forAll:
forAll(element: Type | <expression>)

Note: Element and Type can be omitted
CSCI 6448

Kenneth M. Anderson

Instance Operations

n =, <>

n oclType

n oclIsKindOf()

n oclIsTypeOf()

n oclAsType()

CSCI 6448

Kenneth M. Anderson

Operator Precedence

n Dot (Ò.Ó) and arrow (Ò->Ó)

n Unary ÒnotÓ and Unary minus (Ò-Ó)

n Multiplication (Ò*Ó) and Division (Ò/Ó)

n Addition (Ò+Ó) and Subtraction (Ò-Ó)

n Logical ÒandÓ, ÒorÓ, and ÒxorÓ

n Logical ÒimpliesÓ

n Logical Òif then else endifÓ

n Logical comparison operators Ò<Ò, Ò>Ó, etc.
CSCI 6448

Kenneth M. Anderson

Type Casting

n A type can be cast to one of its
subtypes using the following syntax
object.oclAsType(Type2)

-- object is now considered of type Type2

n Notes
Ð If Type2 is not a valid type for object the

result of the expression is undefined

Ð Comments are started with two dashes

CSCI 6448

Kenneth M. Anderson

Type Conformance

n In constructing an expression, all sub-
expressions and operators must ÒfitÓ
properly conformance

n Definition of Conformance
Ð Type1 conforms to Type2 if an instance of

Type1 can be substituted at each place
where an instance of Type2 is expected.

CSCI 6448

Kenneth M. Anderson

Type Conformance Rules

n Type1 conforms to Type2 when they are identical

n Type1 conforms to Type2 when Type1 is a subtype
of Type2

n Each type is a subtype of OclAny

n Type conformance is transitive

n Integer is a subtype of Real

n There are separate rules for collections on the next
slide...

CSCI 6448

Kenneth M. Anderson

Type Conformance for
Collections
n Every type Collection(T) is a subtype of OclAny

n Set(T), Bag(T), and Sequence(T) are subtypes of
Collection(T)

n Collection(Type1) conforms to Collection(Type2) if
Type1 conforms to Type2

n Set(T) does not conform to Bag(T) or Sequence(T)

n Bag(T) does not conform to Set(T) or Sequence(T)

n Sequence(T) does not conform to Set(T) or Bag(T)

CSCI 6448

Kenneth M. Anderson

Undefined

n An OCL expression may result in Undefined
Ð Example: referencing a non-existent attribute on

an object

n Any expression that has a sub-expression
that is undefined evaluates to undefined
Ð With two exceptionsÉ

¥ True or Undefined = True

¥ False and Undefined = False

CSCI 6448

Kenneth M. Anderson

The OCL Book is good!

n Chapter 4 talks about modeling with
constraints
Ð Lots of examples

n Chapter 5 talks about extending OCL

n Appendix A documents all operations

n Appendix B provides a formal grammar
for the Object Constraint Language

