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Lecture Goals

• Continue our tour of the basic concepts, terminology, and notations for 
object-oriented analysis, design, and programming

• Some material for this lecture is drawn from Head First Java by Sierra & 
Bates, © O'Reilly, 2003

• But first!

• Check out <http://www.google.com/googlebooks/chrome/index.html/>

• for a unique take on documenting design decisions: comic book format

• Google, one of the premier Internet companies, decided to announce its 
new Web browser by creating a comic book and sending it to people via 
postal mail (aka snail mail)!!!
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Overview

• Objects

• Classes

• Relationships

• Inheritance

• Association

• Aggregation/Composition

• Qualification

• Interfaces

• Ken’s Corner: Multiple Inheritance
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Objects (I)

• OO Techniques view software systems as being composed of objects

• Objects have

• state (aka attributes)

• behavior (aka methods or services)

• We would like objects to be

• highly cohesive

• have a single purpose; make use of all features

• loosely coupled

• be dependent on only a few other classes
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Objects (II)

• Objects interact by sending messages to one another

• Object A sends a message to Object B to request that it perform a task

• When the task is complete, B may pass a value back to A

• Note: sometimes A == B

• that is, an object can send a message to itself

• Sometimes messages can be rerouted; invoking a method defined in class A 
may be rerouted to an overridden version of that method in subclass B

• And, invoking a method on an object of class B may invoke an inherited 
version of that method defined by superclass A
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Objects (III)

• In response to a message, an object may

• update its internal state

• retrieve a value from its internal state

• create a new object (or set of objects)

• delegate part or all of the task to some other object

• As a result, objects can be viewed as members of various object networks

• Objects in an object network (aka collaboration) work together to perform 
a task for their host application
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Objects (IV)

• UML notation

• Objects are drawn as rectangles with their names and types underlined

• Ken : Person

• The name of an object is optional. The type, however, is required

• : Person

• Note: the colon is not optional. It’s another clue that you are talking about 
an object, not a class
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Objects (V)

• Objects that know about each other have lines drawn between them

• This connection has many names, the three most common are

• object reference

• reference

• link

• Messages are sent across links

• Links are instances of associations (defined on slide 16)
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Objects (Example)

Skippy: Dog

Felix: Cat

Ken: Person

sit()

feed()
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Classes (I)

• A class is a blueprint for an object

• The blueprint specifies the attributes (aka instance variables) and 
methods of the class

• attributes are things an object of that class knows

• methods are things an object of that class does

• An object is instantiated (created) from the description provided by its 
class

• Thus, objects are often called instances
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Classes (II)

• An object of a class has its own values for the attributes of its class

• For instance, two objects of the Person class can have different values for 
the name attribute

• In general, each object shares the implementation of a class’s methods and 
thus behave similarly

• When a class is defined, its developer provides an implementation for each 
of its methods

• Thus, object A and B of type Person each share the same implementation 
of the sleep() method
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Classes (III)

• Classes can define “class wide” (aka static) attributes and methods

• A static attribute is shared among a class’s objects

• That is, all objects of that class can read/write the static attribute

• A static method does not have to be accessed via an object; you invoke 
static methods directly on a class

• Static methods are often used to implement the notion of “library” in 
OO languages; it doesn’t make sense to have multiple instances of a 
Math class, each with their own sin() method 

• We will see uses for static attributes and methods throughout the semester
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Classes by Analogy

• Address Book

• Each card in an address book is an “instance” or “object” of the 
AddressBookCard class

• Each card has the same blank fields (attributes)

• You can do similar things to each card

• each card has the same set of methods

• The number of cards in the book is an example of a static attribute;

• Sorting the cards alphabetically is an example of a static method
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Classes (IV)

• UML Notation

• Classes appear as rectangles with multiple parts

• The first part contains its name (defines a type)

• The second part contains the class’s attributes

• The third part contains the class’s methods

play()

artist
title

Song
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Relationships: Inheritance

• Classes can be related in various 
ways

• One class can extend another 
(aka inheritance)

• notation: an open triangle 
points to the superclass

• As we learned last time, the 
subclass can add behaviors or 
override existing ones 

Animal

location

food type

roam()

eat()

makeNoise()

Hippo

eat()

makeNoise()

submerge()
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Relationships: Association

• One class can reference another (aka 
association)

• notation: straight line

• This notation is a graphical 
shorthand that each class contains 
an attribute whose type is the other 
class

Zoo

addAnimal()

Hippo

eat()

makeNoise()

Zoo

addAnimal()

Hippo ourHippo

shortcut for

Hippo

eat()

makeNoise()

Zoo myZoo
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Multiplicity

• Associations can indicate the number of instances involved in the relationship

• this is known as multiplicity

• An association with no markings is “one to one”

• An association can also indicate directionality

• Examples on next slide
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Multiplicity Examples

A B
One B with each A; one
A with each B

A B
11

Same as above

A B
*1 Zero or more Bs with each

A; one A with each B

A B
** Zero or more Bs with each

A; ditto As with each B

A B
2..51

A B
*

Two to Five Bs with each
A; one A with each B

Zero or more Bs with each
A; B knows nothing about A
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Multiplicity Example

A
2..51

B

A

B

A

B BB B
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Relationships: whole-part

• Associations can also convey semantic information about themselves

• In particular, aggregations indicate that one object contains  a set of other 
objects

• think of it as a whole-part relationship between

• a class representing a group of components

• a class representing the components

• Notation: aggregation is indicated with a white diamond attached to the 
class playing the container role
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Example: Aggregation

Composition

Book

Section

Chapter

Aggregation

Crate

Bottle

Composition will be 
defined on the next slide

Note: aggregation and 
composition relationships 
change the default multiplicity 
of associations;

instead of “one to one”, you 
should assume “one to many”

*
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Semantics of Aggregation

• Aggregation relationships are transitive

• if A contains B and B contains C, then A contains C

• Aggregation relationships are asymmetric

• If A contains B, then B does not contain A

• A variant of aggregation is composition which adds the property of 
existence dependency

• if A composes B, then if A is deleted, B is deleted

• Composition relationships are shown with a black diamond attached to the 
composing class
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Relationships: Qualification

• An association can be qualified with information that indicates how objects 
on the other end of the association are found

• This allows a designer to indicate that the association requires a query 
mechanism of some sort

• e.g., an association between a phonebook and its entries might be 
qualified with a name, indicating that the name is required to locate a 
particular entry

• Notation: a qualification is indicated with a rectangle attached to the end 
of an association indicating the attributes used in the query
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Qualification Example

EntryPhoneBook name
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Relationships: Interfaces

• A class can indicate that it implements an interface

• An interface is a type of class definition in which only method signatures 
are defined

• A class implementing an interface provides method bodies for each defined 
method signature in that interface

• This allows a class to play different roles, each role providing a different set 
of services

• These roles are then independent of the class’s inheritance 
relationships

• Other classes can then access a class via its interface

• This is indicated via a “ball and socket” notation
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Example: Interfaces

Dog

location

food type

roam()

eat()

makeNoise()

Pet

Dog

location

food type

roam()

eat()

makeNoise()

Pet

Person
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Class Summary

• Classes are blue prints used to create objects

• Classes can participate in multiple relationship types

• inheritance

• association

• associations have multiplicity

• aggregation/composition

• qualification

• Interfaces
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Ken’s Corner

• Multiple Inheritance

• Some material for this section taken from

• Object-Oriented Design Heuristics by Arthur J. Riel

• Copyright © 1999 by Addison Wesley

• ISBN: 0-201-63385-X
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Multiple Inheritance

• Riel does not advocate the use of multiple inheritance (its too easy to misuse 
it). As such, his first heuristic is

• If you have an example of multiple inheritance in your design, assume you 
have made a mistake and prove otherwise!

• Most common mistake

• Using multiple inheritance in place of containment

• That is, you need the services of a List to complete a task

• Rather than creating an instance of a List internally, you instead use 
multiple inheritance to inherit from your semantic superclass as well 
as from List to gain direct access to List’s methods

• You can then invoke List’s methods directly and complete the 
task
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Graphically

Animal

location

food type

roam()

eat()

makeNoise()

Hippo

eat()

makeNoise()

submerge()

List

head

elements

findElement()

removeElement()

addElement()

Inheriting from List in this way is bad, 
because “Hippo IS-A List” is FALSE

A Hippo is NOT a special type of List

Instead...
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Do This

What’s the Difference?
Animal

location

food type

roam()

eat()

makeNoise()

Hippo

eat()

makeNoise()

submerge()

List

head

elements

findElement()

removeElement()

addElement()
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Another Problem

C

A

B

D

What’s wrong with this?

Hint: think about what might 
happen when you create an 
instance of D

Fortunately: Python gets it 
right! See example code.
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Multiple Inheritance

• A Second Heuristic

• Whenever there is inheritance in an OO design, ask two questions:

1) Am I a special type of the thing from which I’m inheriting?

2) Is the thing from which I’m inheriting part of me?

• A yes to 1) and no to 2) implies the need for inheritance

• A no to 1) and a yes to 2) implies the need for composition

• Recall Hippo/List example

• Example

• Is an airplane a special type of fuselage? No

• Is a fuselage part of an airplane? Yes
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Multiple Inheritance

• A third heuristic

• Whenever you have found a multiple inheritance relationship in an object-
oriented design, be sure that no base class is actually a derived class of 
another base class

• Otherwise you have what Riel calls accidental multiple inheritance

• Consider the classes “Citrus”, “Food”, and “Orange”; you can have 
Orange multiply inherit from both Citrus and Food…but Citrus IS-A Food, 
and so the proper hierarchy can be achieved with single inheritance

CitrusFood

Orange

Citrus

Food

Orange
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Multiple Inheritance

• So, is there a valid use of multiple inheritance?

• Yes, sub-typing for combination

• It is used to define a new class that is a special type of two other 
classes where those two base classes are from different domains

• In such cases, the derived class can then legally combine data and 
behavior from the two different base classes in a way that makes 
semantic sense
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Multiple Inheritance Example

Is a wooden door a special type of door? Yes
Is a door part of a wooden door? No
Is a wooden door a special type of wooden object? Yes
Is a wooden object part of a door? No
Is a wooden object a special type of door? No
Is a door a special type of wooden object? No
All Heuristics Pass!

DoorWoodenObject

WoodenDoor
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Coming Up Next

• Lecture 4: Object Fundamentals, Part 3

• Lecture 5: Great Software

• Read Chapter 1 of the OO A&D book
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