
Object Fundamentals
Part Two

Kenneth M. Anderson
University of Colorado, Boulder

CSCI 4448/6448 — Lecture 3 — 09/02/2008

1Tuesday, September 2, 2008

Lecture Goals

• Continue our tour of the basic concepts, terminology, and notations for
object-oriented analysis, design, and programming

• Some material for this lecture is drawn from Head First Java by Sierra &
Bates, © O'Reilly, 2003

• But first!

• Check out <http://www.google.com/googlebooks/chrome/index.html/>

• for a unique take on documenting design decisions: comic book format

• Google, one of the premier Internet companies, decided to announce its
new Web browser by creating a comic book and sending it to people via
postal mail (aka snail mail)!!!

2Tuesday, September 2, 2008

http://www.google.com/googlebooks/chrome/index.html
http://www.google.com/googlebooks/chrome/index.html

Overview

• Objects

• Classes

• Relationships

• Inheritance

• Association

• Aggregation/Composition

• Qualification

• Interfaces

• Ken’s Corner: Multiple Inheritance

3Tuesday, September 2, 2008

Objects (I)

• OO Techniques view software systems as being composed of objects

• Objects have

• state (aka attributes)

• behavior (aka methods or services)

• We would like objects to be

• highly cohesive

• have a single purpose; make use of all features

• loosely coupled

• be dependent on only a few other classes

4Tuesday, September 2, 2008

Objects (II)

• Objects interact by sending messages to one another

• Object A sends a message to Object B to request that it perform a task

• When the task is complete, B may pass a value back to A

• Note: sometimes A == B

• that is, an object can send a message to itself

• Sometimes messages can be rerouted; invoking a method defined in class A
may be rerouted to an overridden version of that method in subclass B

• And, invoking a method on an object of class B may invoke an inherited
version of that method defined by superclass A

5Tuesday, September 2, 2008

Objects (III)

• In response to a message, an object may

• update its internal state

• retrieve a value from its internal state

• create a new object (or set of objects)

• delegate part or all of the task to some other object

• As a result, objects can be viewed as members of various object networks

• Objects in an object network (aka collaboration) work together to perform
a task for their host application

6Tuesday, September 2, 2008

Objects (IV)

• UML notation

• Objects are drawn as rectangles with their names and types underlined

• Ken : Person

• The name of an object is optional. The type, however, is required

• : Person

• Note: the colon is not optional. It’s another clue that you are talking about
an object, not a class

7Tuesday, September 2, 2008

Objects (V)

• Objects that know about each other have lines drawn between them

• This connection has many names, the three most common are

• object reference

• reference

• link

• Messages are sent across links

• Links are instances of associations (defined on slide 16)

8Tuesday, September 2, 2008

Objects (Example)

Skippy: Dog

Felix: Cat

Ken: Person

sit()

feed()

9Tuesday, September 2, 2008

Classes (I)

• A class is a blueprint for an object

• The blueprint specifies the attributes (aka instance variables) and
methods of the class

• attributes are things an object of that class knows

• methods are things an object of that class does

• An object is instantiated (created) from the description provided by its
class

• Thus, objects are often called instances

10Tuesday, September 2, 2008

Classes (II)

• An object of a class has its own values for the attributes of its class

• For instance, two objects of the Person class can have different values for
the name attribute

• In general, each object shares the implementation of a class’s methods and
thus behave similarly

• When a class is defined, its developer provides an implementation for each
of its methods

• Thus, object A and B of type Person each share the same implementation
of the sleep() method

11Tuesday, September 2, 2008

Classes (III)

• Classes can define “class wide” (aka static) attributes and methods

• A static attribute is shared among a class’s objects

• That is, all objects of that class can read/write the static attribute

• A static method does not have to be accessed via an object; you invoke
static methods directly on a class

• Static methods are often used to implement the notion of “library” in
OO languages; it doesn’t make sense to have multiple instances of a
Math class, each with their own sin() method

• We will see uses for static attributes and methods throughout the semester

12Tuesday, September 2, 2008

Classes by Analogy

• Address Book

• Each card in an address book is an “instance” or “object” of the
AddressBookCard class

• Each card has the same blank fields (attributes)

• You can do similar things to each card

• each card has the same set of methods

• The number of cards in the book is an example of a static attribute;

• Sorting the cards alphabetically is an example of a static method

13Tuesday, September 2, 2008

Classes (IV)

• UML Notation

• Classes appear as rectangles with multiple parts

• The first part contains its name (defines a type)

• The second part contains the class’s attributes

• The third part contains the class’s methods

play()

artist
title

Song

14Tuesday, September 2, 2008

Relationships: Inheritance

• Classes can be related in various
ways

• One class can extend another
(aka inheritance)

• notation: an open triangle
points to the superclass

• As we learned last time, the
subclass can add behaviors or
override existing ones

Animal

location

food type

roam()

eat()

makeNoise()

Hippo

eat()

makeNoise()

submerge()

15Tuesday, September 2, 2008

Relationships: Association

• One class can reference another (aka
association)

• notation: straight line

• This notation is a graphical
shorthand that each class contains
an attribute whose type is the other
class

Zoo

addAnimal()

Hippo

eat()

makeNoise()

Zoo

addAnimal()

Hippo ourHippo

shortcut for

Hippo

eat()

makeNoise()

Zoo myZoo

16Tuesday, September 2, 2008

Multiplicity

• Associations can indicate the number of instances involved in the relationship

• this is known as multiplicity

• An association with no markings is “one to one”

• An association can also indicate directionality

• Examples on next slide

17Tuesday, September 2, 2008

Multiplicity Examples

A B
One B with each A; one
A with each B

A B
11

Same as above

A B
*1 Zero or more Bs with each

A; one A with each B

A B
** Zero or more Bs with each

A; ditto As with each B

A B
2..51

A B
*

Two to Five Bs with each
A; one A with each B

Zero or more Bs with each
A; B knows nothing about A

18Tuesday, September 2, 2008

Multiplicity Example

A
2..51

B

A

B

A

B BB B

19Tuesday, September 2, 2008

Relationships: whole-part

• Associations can also convey semantic information about themselves

• In particular, aggregations indicate that one object contains a set of other
objects

• think of it as a whole-part relationship between

• a class representing a group of components

• a class representing the components

• Notation: aggregation is indicated with a white diamond attached to the
class playing the container role

20Tuesday, September 2, 2008

Example: Aggregation

Composition

Book

Section

Chapter

Aggregation

Crate

Bottle

Composition will be
defined on the next slide

Note: aggregation and
composition relationships
change the default multiplicity
of associations;

instead of “one to one”, you
should assume “one to many”

*

21Tuesday, September 2, 2008

Semantics of Aggregation

• Aggregation relationships are transitive

• if A contains B and B contains C, then A contains C

• Aggregation relationships are asymmetric

• If A contains B, then B does not contain A

• A variant of aggregation is composition which adds the property of
existence dependency

• if A composes B, then if A is deleted, B is deleted

• Composition relationships are shown with a black diamond attached to the
composing class

22Tuesday, September 2, 2008

Relationships: Qualification

• An association can be qualified with information that indicates how objects
on the other end of the association are found

• This allows a designer to indicate that the association requires a query
mechanism of some sort

• e.g., an association between a phonebook and its entries might be
qualified with a name, indicating that the name is required to locate a
particular entry

• Notation: a qualification is indicated with a rectangle attached to the end
of an association indicating the attributes used in the query

23Tuesday, September 2, 2008

Qualification Example

EntryPhoneBook name

24Tuesday, September 2, 2008

Relationships: Interfaces

• A class can indicate that it implements an interface

• An interface is a type of class definition in which only method signatures
are defined

• A class implementing an interface provides method bodies for each defined
method signature in that interface

• This allows a class to play different roles, each role providing a different set
of services

• These roles are then independent of the class’s inheritance
relationships

• Other classes can then access a class via its interface

• This is indicated via a “ball and socket” notation

25Tuesday, September 2, 2008

Example: Interfaces

Dog

location

food type

roam()

eat()

makeNoise()

Pet

Dog

location

food type

roam()

eat()

makeNoise()

Pet

Person

26Tuesday, September 2, 2008

Class Summary

• Classes are blue prints used to create objects

• Classes can participate in multiple relationship types

• inheritance

• association

• associations have multiplicity

• aggregation/composition

• qualification

• Interfaces

27Tuesday, September 2, 2008

Ken’s Corner

• Multiple Inheritance

• Some material for this section taken from

• Object-Oriented Design Heuristics by Arthur J. Riel

• Copyright © 1999 by Addison Wesley

• ISBN: 0-201-63385-X

28Tuesday, September 2, 2008

29

Multiple Inheritance

• Riel does not advocate the use of multiple inheritance (its too easy to misuse
it). As such, his first heuristic is

• If you have an example of multiple inheritance in your design, assume you
have made a mistake and prove otherwise!

• Most common mistake

• Using multiple inheritance in place of containment

• That is, you need the services of a List to complete a task

• Rather than creating an instance of a List internally, you instead use
multiple inheritance to inherit from your semantic superclass as well
as from List to gain direct access to List’s methods

• You can then invoke List’s methods directly and complete the
task

29Tuesday, September 2, 2008

Graphically

Animal

location

food type

roam()

eat()

makeNoise()

Hippo

eat()

makeNoise()

submerge()

List

head

elements

findElement()

removeElement()

addElement()

Inheriting from List in this way is bad,
because “Hippo IS-A List” is FALSE

A Hippo is NOT a special type of List

Instead...

30Tuesday, September 2, 2008

Do This

What’s the Difference?
Animal

location

food type

roam()

eat()

makeNoise()

Hippo

eat()

makeNoise()

submerge()

List

head

elements

findElement()

removeElement()

addElement()

31Tuesday, September 2, 2008

Another Problem

C

A

B

D

What’s wrong with this?

Hint: think about what might
happen when you create an
instance of D

Fortunately: Python gets it
right! See example code.

32Tuesday, September 2, 2008

Multiple Inheritance

• A Second Heuristic

• Whenever there is inheritance in an OO design, ask two questions:

1) Am I a special type of the thing from which I’m inheriting?

2) Is the thing from which I’m inheriting part of me?

• A yes to 1) and no to 2) implies the need for inheritance

• A no to 1) and a yes to 2) implies the need for composition

• Recall Hippo/List example

• Example

• Is an airplane a special type of fuselage? No

• Is a fuselage part of an airplane? Yes

33Tuesday, September 2, 2008

Multiple Inheritance

• A third heuristic

• Whenever you have found a multiple inheritance relationship in an object-
oriented design, be sure that no base class is actually a derived class of
another base class

• Otherwise you have what Riel calls accidental multiple inheritance

• Consider the classes “Citrus”, “Food”, and “Orange”; you can have
Orange multiply inherit from both Citrus and Food…but Citrus IS-A Food,
and so the proper hierarchy can be achieved with single inheritance

CitrusFood

Orange

Citrus

Food

Orange

34Tuesday, September 2, 2008

35

Multiple Inheritance

• So, is there a valid use of multiple inheritance?

• Yes, sub-typing for combination

• It is used to define a new class that is a special type of two other
classes where those two base classes are from different domains

• In such cases, the derived class can then legally combine data and
behavior from the two different base classes in a way that makes
semantic sense

35Tuesday, September 2, 2008

36

Multiple Inheritance Example

Is a wooden door a special type of door? Yes
Is a door part of a wooden door? No
Is a wooden door a special type of wooden object? Yes
Is a wooden object part of a door? No
Is a wooden object a special type of door? No
Is a door a special type of wooden object? No
All Heuristics Pass!

DoorWoodenObject

WoodenDoor

36Tuesday, September 2, 2008

Coming Up Next

• Lecture 4: Object Fundamentals, Part 3

• Lecture 5: Great Software

• Read Chapter 1 of the OO A&D book

37Tuesday, September 2, 2008

