
Introduction to Design Patterns

Kenneth M. Anderson
University of Colorado, Boulder

CSCI 4448/6448 — Lecture 19 — 10/28/2008

© University of Colorado, 2008

Thursday, October 30, 2008

Lecture Goals

• Cover Material from Chapter 1 and 2 of the Design Patterns Textbook

• Introduction to Design Patterns

• Strategy Pattern

• Observer Pattern

2

Thursday, October 30, 2008

Why Patterns? (I)

• As the Design Guru says

• “Remember, knowing concepts like

• abstraction,

• inheritance, and

• polymorphism

• do not make you a good OO designer.

• A design guru thinks about how to create flexible designs that are
maintainable and that can cope with change.”

3

Thursday, October 30, 2008

Why Patterns? (II)

• Someone has already solved your problems (!)

• Design patterns allow you to exploit the wisdom and lessons learned by
other developers who’ve encountered design problems similar to the ones
you are encountering

• The best way to use design patterns is to load your brain with them and
then recognize places in your designs and existing applications where you
can apply them

• Instead of code reuse, you get experience reuse

4

Thursday, October 30, 2008

Design Pattern by Example

• SimUDuck: a “duck pond simulator” that can show a wide variety of duck
species swimming and quacking

• Initial State

• But a request has arrived to allow ducks to also fly. (We need to stay
ahead of the competition!)

quack()
swim()
display()

Duck

display()
MallardDuck

display()
RedheadDuck

5

Thursday, October 30, 2008

Easy

quack()
swim()
display()

Duck

display()
MallardDuck

display()
RedheadDuck

quack()
swim()
display()
fly()

Duck

display()
MallardDuck

display()
RedheadDuck

Code Reuse via Inheritance

Add fly() to Duck; all ducks can now fly

6

Thursday, October 30, 2008

Whoops!

quack()
swim()
display()
fly()

Duck

display()
MallardDuck

display()
RedheadDuck

quack()
display()

RubberDuck

Rubber ducks do not fly! They
don’t quack either, so we had
previously overridden quack() to
make them squeak.

We could override fly() in
RubberDuck to make it do
nothing, but that’s less than
ideal, especially...

7

Thursday, October 30, 2008

Double Whoops!

quack()
swim()
display()
fly()

Duck

display()
MallardDuck

display()
RedheadDuck

display()
quack()
fly()

RubberDuck
display()
quack()
fly()

DecoyDuck

…when we might always find other Duck subclasses that would
have to do the same thing.

What was supposed to be a good instance of reuse via
inheritance has turned into a maintenance headache!

8

Thursday, October 30, 2008

What about an Interface?

swim()
display()

Duck

display()
fly()
quack()

MallardDuck
display()
fly()
quack()

RedheadDuck
display()
quack()

RubberDuck
display()
DecoyDuck

fly()

Flyable
«Interface»

quack()

Quackable
«Interface»

Here we define two
interfaces and allow
subclasses to implement
the interfaces they need.

What are the trade-offs?
9

Thursday, October 30, 2008

Design Trade-Offs

• With inheritance, we get

• code reuse, only one fly() and quack() method vs. multiple (pro)

• common behavior in root class, not so common after all (con)

• With interfaces, we get

• specificity: only those subclasses that need a fly() method get it (pro)

• no code re-use: since interfaces only define signatures (con)

• Use of abstract base class over an interface? Could do it, but only in
languages that support multiple inheritance

• In this approach, you implement Flyable and Quackable as abstract base
classes and then have Duck subclasses use multiple inheritance

• Trade-Offs?

10

Thursday, October 30, 2008

OO Principles to the Rescue!

• Encapsulate What Varies

• Recall the InstrumentSpec example from the OO A&D textbook

• The “what varies” part was the properties between InstrumentSpec
subclasses

• What we needed was “dynamic properties” and the solution entailed
getting rid of all the subclasses and storing the properties in a hash
table

• For this particular problem, the “what varies” is the behaviors between Duck
subclasses

• We need to pull out behaviors that vary across subclasses and put them in
their own classes (i.e. encapsulate them)

• The result: fewer unintended consequences from code changes (such as
when we added fly() to Duck) and more flexible code

11

Thursday, October 30, 2008

Basic Idea

• Take any behavior that varies across Duck subclasses and pull them out of
Duck

• Duck’s will no longer have fly() and quack() methods directly

• Create two sets of classes, one that implements fly behaviors and one that
implements quack behaviors

• Code to an Interface

• We’ll make use of the “code to an interface” principle and make sure that
each member of the two sets implements a particular interface

• For QuackBehavior, we’ll have Quack, Squeak, Silence

• For FlyBehavior, we’ll have FlyWithWings, CantFly, FlyWhenThrown, …

• Additional benefits

• Other classes can gain access to these behaviors (if that makes sense)
and we can add additional behaviors without impacting other classes

12

Thursday, October 30, 2008

“Code to Interface” Does NOT Imply Java Interface

• We are overloading the word “interface” when we say “code to an interface”

• We can implement “code to an interface” by defining a Java interface and
then have various classes implement that interface

• Or, we can “code to a supertype” and instead define an abstract base
class which classes can access via inheritance.

• When we say “code to an interface” it implies that the object that is using the
interface will have a variable whose type is the supertype (whether its an
interface or abstract base class) and thus

• can point at any implementation of that supertype

• and is shielded from their specific class names

• A Duck will point to a fly behavior with a variable of type FlyBehavior
NOT FlyWithWings; the code will be more loosely coupled as a result

13

Thursday, October 30, 2008

Bringing It All Together: Delegation

• To take advantage of these new behaviors, we must modify Duck to delegate
its flying and quacking behaviors to these other classes

• rather than implementing this behavior internally

• We’ll add two attributes that store the desired behavior and we’ll rename fly()
and quack() to performFly() and performQuack()

• this last step is meant to address the issue of it not making sense for a
DecoyDuck to have methods like fly() and quack() directly as part of its
interface

• Instead, it inherits these methods and plugs-in CantFly and Silence
behaviors to make sure that it does the right thing if those methods are
invoked

• This is an instance of the principle “Favor composition over inheritance”

14

Thursday, October 30, 2008

New Class Diagram

FlyBehavior and QuackBehavior define a set of behaviors that provide
behavior to Duck. Duck is composing each set of behaviors and can
switch among them dynamically, if needed. While now each subclass has
a performFly() and performQuack() method, at least the user interface is
uniform and those methods can point to null behaviors when required.

15

swim()
display()
setFlyBehavior()
setQuackBehavior()
performFly()
performQuack()

Duck

display()
MallardDuck

display()
RedheadDuck

display()
RubberDuck

display()
DecoyDuck

fly()
FlyBehavior

quack()
QuackBehavior

FlyWithWings CantFly QuackSilence Squeak

flyBehavior quackBehavior

Thursday, October 30, 2008

Duck.java

public abstract class Duck {1

! FlyBehavior flyBehavior;2

! QuackBehavior quackBehavior;3

 4

! public Duck() {5

! }6

 7

! public void setFlyBehavior (FlyBehavior fb) {8

! ! flyBehavior = fb;9

! }10

 11

! public void setQuackBehavior(QuackBehavior qb) {12

! ! quackBehavior = qb;13

! }14

 15

! abstract void display();16

 17

! public void performFly() {18

! ! flyBehavior.fly();19

! }20

 21

! public void performQuack() {22

! ! quackBehavior.quack();23

! }24

 25

! public void swim() {26

! ! System.out.println("All ducks float, even decoys!");27

! }28

}29

30

Note: “code to interface”,
delegation, encapsulation,
and ability to change
behaviors dynamically

16

Thursday, October 30, 2008

DuckSimulator.java

public class MiniDuckSimulator {1

 2

! public static void main(String[] args) {3

 4

! ! Duck! mallard = new MallardDuck();5

! ! Duck! rubberDuckie = new RubberDuck();6

! ! Duck! decoy = new DecoyDuck();7

 8

! ! Duck! model = new ModelDuck();9

10

! ! mallard.performQuack();11

! ! rubberDuckie.performQuack();12

! ! decoy.performQuack();13

 14

! ! model.performFly();!15

! ! model.setFlyBehavior(new FlyRocketPowered());16

! ! model.performFly();17

! }18

}19

20

Note: all variables
are of type Duck,
not the specific
subtypes; “code to
interface” in action

17

Thursday, October 30, 2008

Not Completely Decoupled

• Is DuckSimulator completely decoupled from the Duck subclasses?

• All of its variables are of type Duck

• No!

• The subclasses are still coded into DuckSimulator

• Duck mallard = new MallardDuck();

• This is a type of coupling… fortunately, we can eliminate this type of coupling
if needed, using a pattern called Factory.

• We’ll see Factory in action later this semester

18

Thursday, October 30, 2008

Meet the Strategy Design Pattern

• The solution that we applied to this design problem is known as the Strategy
Design Pattern

• It features the following OO design concepts/principles:

• Encapsulate What Varies

• Code to an Interface

• Delegation

• Favor Composition over Inheritance

• Definition: The Strategy pattern defines a family of algorithms, encapsulates
each one, and makes them interchangeable. Strategy lets the algorithm vary
independently from clients that use it

19

Thursday, October 30, 2008

Structure of Strategy

performOperation()
setAlgorithm(a: Algorithm)

Client

operation()
Algorithm

ConcreteAlgorithm1

strategy

ConcreteAlgorithmN...

strategy.operation()

Algorithm is pulled out of Client. Client only makes use of public
interface of Algorithm and is not tied to concrete subclasses.

Client can change its behavior by switching among the various
concrete algorithms

20

Thursday, October 30, 2008

Observer Pattern

• Don’t miss out when something interesting (in your system) happens!

• The observer pattern allows objects to keep other objects informed about
events occurring within a software system (or across multiple systems)

• Its dynamic in that an object can choose to receive notifications or not at
run-time

• Observer happens to be one of the most heavily used patterns in the Java
Development Kit

21

Thursday, October 30, 2008

Chapter Example: Weather Monitoring

Weather
Station

Temp
Sensor

Humidity
Sensor

Pressure
Sensor

Weather
Data

Object

TabTabTab

Document Window

pull
data

display
data

provided what we implement

We need to pull information from the station and then generate
“current conditions, weather stats, and a weather forecast”. 22

Thursday, October 30, 2008

WeatherData Skeleton

getTemperature()
getHumidity()
getPressure()
measurementsChanged()

WeatherData We receive a partial implementation of the
WeatherData class from our client.

They provide three getter methods for the
sensor values and an empty
measurementsChanged() method that is
guaranteed to be called whenever a
sensor provides a new value

We need to pass these values to our
three displays… so that’s simple!

23

Thursday, October 30, 2008

First pass at measurementsChanged

...1

2

public void measurementsChanged() {3

4

 float temp = getTemperature();5

 float humidity = getHumidity();6

 float pressure = getPressure();7

 8

 currentConditionsDisplay.update(temp, humidity, pressure);9

 statisticsDisplay.update(temp, humidity, pressure);10

 forecastDisplay.update(temp, humidity, pressure);11

12

}13

14

...15

16

Problems?

1. The number and type of displays may vary.
These three displays are hard coded with no easy way
to update them.
2. Coding to implementations, not an interface!
Although each implementation has adopted the same
interface, so this will make translation easy!

24

Thursday, October 30, 2008

Observer Pattern

• This situation can benefit from use of the observer pattern

• This pattern is similar to subscribing to a hard copy newspaper

• A newspaper comes into existence and starts publishing editions

• You become interested in the newspaper and subscribe to it

• Any time an edition becomes available, you are notified (by the fact that
it is delivered to you)

• When you don’t want the paper anymore, you unsubscribe

• The newspaper’s current set of subscribers can change at any time

• Observer is just like this but we call the publisher the “subject” and we
refer to subscribers as “observers”

25

Thursday, October 30, 2008

Observer in Action (I)

Observers

Subject

Observer
1

Observer
2

Observer
3

Subject maintains a list of observers 26

Thursday, October 30, 2008

Observer in Action (II)

Observers

Subject

Observer
1

Observer
2

Observer
3

If the Subject changes, it notifies its observers 27

Thursday, October 30, 2008

Observer in Action (III)

Observers

Subject

Observer
1

Observer
2

Observer
3

If needed, an observer may query its subject for more information 28

Thursday, October 30, 2008

Observer In Action (IV)

Observers

Subject

Observer
1

Observer
2

Observer
3

At any point, an observer may join or leave the set of observers

Observer
4

29

Thursday, October 30, 2008

Observer Definition and Structure

• The Observer Pattern defines a one-to-many dependency between a set of
objects, such that when one object (the subject) changes all of its dependents
(observers) are notified and updated automatically

registerObserver()
removeObserver()
notifyObservers()

Subject
«Interface»

update()

Observer
«Interface»

observers

*

getState()
setState()

state
ConcreteSubject

Observer
subject

30

Thursday, October 30, 2008

Observer Benefits

• Observer affords a loosely coupled interaction between subject and observer

• This means they can interact with very little knowledge about each other

• Consider

• The subject only knows that observers implement the Observer interface

• We can add/remove observers of any type at any time

• We never have to modify subject to add a new type of observer

• We can reuse subjects and observers in other contexts

• The interfaces plug-and-play where ever observer is used

• Observers may have to know about the ConcreteSubject class if it
provides many different state-related methods

• Otherwise, data can be passed to observers via the update() method

31

Thursday, October 30, 2008

Demonstration

• Roll Your Own Observer

• Using java.util.Observable and java.util.Observer

• Observable is a CLASS, a subject has to subclass it to manage observers

• Observer is an interface with one defined method: update(subject, data)

• To notify observers: call setChanged(), then notifyObservers(data)

• Observer in Swing

• Listener framework is just another name for the Observer pattern

32

Thursday, October 30, 2008

The Importance of Shared Vocabulary (I)

• Design Patterns are important because they provide a shared vocabulary to
software design

• (In addition, to being really useful solutions to tricky design problems!)

• Compare:

• So I created this broadcast class. It tracks a set of listeners and anytime its
data changes, it sends a message to the listeners. Listeners can join and
leave at any time. It’s really dynamic and loosely-coupled.

• With:

• I used the Observer Design Pattern

33

Thursday, October 30, 2008

The Importance of Shared Vocabulary (II)

• Shared pattern vocabularies are powerful

• You communicate not just a name, but a whole set of qualities, services,
and constraints associated with the pattern

• Patterns allow you to say more with less

• Other developers quickly pick up on the design you are proposing

• Talking about patterns, lets you “stay in the design” longer

• You don’t have to get into nitty gritty details, just how your classes map
into the roles provided by the pattern

• Shared vocabularies can empower your development team

• Experienced team members can talk about design more quickly; junior
programmers are motivated to get up to speed, so they can influence the
design of the target system

34

Thursday, October 30, 2008

Wrapping Up

• We’ve seen how patterns embody good OO principles

• We’ve discussed how they can help keep a team focused on design

• In the weeks ahead, we’ll be learning about

• Decorator

• Factory

• Singleton

• Command

• Adapter

• Template Method

• and more!

35

Thursday, October 30, 2008

Coming Up Next

• Lecture 20: Decorator and Factory Patterns

• Chapters 3 and 4 of the Design Patterns book

36

Thursday, October 30, 2008

