
Putting It All Together

Kenneth M. Anderson
University of Colorado, Boulder

CSCI 4448/6448 — Lecture 14 — 10/09/2008

© University of Colorado, 2008

Sunday, October 12, 2008

Lecture Goals

• Review material from Chapter 10 of the OO A&D textbook

• The OO A&D project life cycle

• The Objectville Subway Map Example (in python)

• Dijkstra’s Algorithm

• Discuss the example application of Chapter 10

• Emphasize the OO concepts and techniques encountered in Chapter 10

2

Sunday, October 12, 2008

The OO A&D Project Life Cycle

• All software development projects require a software development life cycle
to organize the work performed by their developers

• Even when there is only one developer and the life cycle being used is
“code and fix”

• After nine chapters and ten lectures, we have established a fairly complete
look at the various stages of an OO A&D project life cycle

• The overall life cycle consists of three stages

• Make sure your software does what the customer wants it to do

• Apply basic OO principles to add flexibility

• Strive for a maintainable, reusable design

• But there are many activities associated with these stages

• plus iteration and testing!

3

Sunday, October 12, 2008

The Activities

1. Feature List (1)

2. Use Case Diagrams (1)

3. Break Up the Problem (1)

4. Requirements (1)

5. Domain Analysis (1)

6. Preliminary Design (2)

7. Implementation (2/3)
Repeat steps 4-7 until done

8. Delivery

High-level view of app’s functions

Types of Users and Tasks

Divide and Conquer

Gather requirements for module

Fill in use-case details

Class diagram, apply OO principles

Write code, test it

You’re Done

Sunday, October 12, 2008

Example: Objectville Subway

• To emphasize how much we have learned, the book performs this life cycle
on a project that models a subway system and can find the shortest route
between any two subway stops

• We’ll review portions of this process

• And code the solution in Python for comparison

• Vision Statement from Objectville Travel

• They need a RouteFinder for the Objectville Subway System

• First step?

• Feature List

5

Sunday, October 12, 2008

Phase One: Feature List

Objectville RouteFinder Feature List

1. Represent subway line and stations
along that line.
2. Load subway lines into program,
including lines that intersect
3. Calculate path between any two
stations in the subway system
4. Print a route between two stations
as a set of directions

Feature lists are all about
understanding what your software is
supposed to do…

…even (relatively) simple programs
like this

Next Up? Use Case Diagram

6

Sunday, October 12, 2008

Phase Two: Use Case Diagram

Objectville RouteFinder

Admin Travel Agent

Represent subway lines
and their stations

Load Subway Lines

Calculate Path

Print Directions

Manage

Subway

Lines

Get

Directions

Your use case diagram lets you think about how your software
will be used, without requiring a lot of detail; features can be
assigned to use cases

Note: book calls this use case
“Load Subway”

7

Sunday, October 12, 2008

Features vs. Use Cases

• Use cases reflect usage; Features reflect functionality

• When we match features to use cases we are indicating that a particular
use case depends on a particular feature having been implemented

• Features and use cases work together, but they are not the same thing

• Not all features will match to use cases directly

• instead indirect relationships may exist

• The book uses the example of not being able to load subway lines until
you have a representation (data structure) for subway lines

• The use case for loading subway lines will only use the “representation
feature” indirectly

8

Sunday, October 12, 2008

Phase Three: The Big Break Up

Objectville RouteFinder

Subway

Loader

Printer

Test

For this small problem, we could have used just a single
package, but the book applied the single-responsibility
principle and encapsulation to create the modules above

9

Sunday, October 12, 2008

New Step! Understand the Problem

• The next step in the original life cycle is “Requirements”

• We would focus on generating lists of requirements and filling out the
details of our use cases

• But, if you find that you don’t understand the problem well enough to supply
the details of a use case, you need to start the requirements process with
activities that will help you analyze the problem and gain a deeper
understanding

• In the example, we start iteration 1 by focusing on the “Load Subway Lines”
use case

• And then first do some domain analysis to understand the problem domain
a bit better and get us the details we need to write the use case

10

Sunday, October 12, 2008

Understanding Our Domain (I)

Grand Central Station

Station

Boulder Buff Lane

StationConnection

Subway
Line

A subway line is a
series of stations,
each connected to
each other

11

Sunday, October 12, 2008

Understanding Our Domain (II)

Ajax Rapids1

Algebra Avenue2

Boards 'R' Us3

Break Neck Pizza4

Choc-O-Holic, Inc.5

CSS Center6

Design Patterns Plaza7

DRY Drive8

EJB Estates9

GoF Gardens10

Head First Labs11

Head First Lounge12

Head First Theater13

HTML Heights14

Infinite Circle15

JavaBeans Boulevard16

JavaRanch17

JSP Junction18

LSP Lane19

Mighty Gumball, Inc.20

Objectville Diner21

Objectville Pizza Store22

OCP Orchard23

OOA&D Oval24

PMP Place25

Servlet Springs26

SimUDuck Lake27

SRP Square28

The Tikibean Lounge29

UML Walk30

Weather-O-Rama, Inc.31

Web Design Way32

XHTML Expressway33

34

Booch Line35

Ajax Rapids36

UML Walk37

Objectville Pizza Store38

Head First Labs39

LSP Lane40

JavaBeans Boulevard41

HTML Heights42

Ajax Rapids43

44

Wirfs-Brock Line45

UML Walk46

The Tikibean Lounge47

Head First Lounge48

Objectville Diner49

Servlet Springs50

SRP Square51

Break Neck Pizza52

EJB Estates53

Boards 'R' Us54

Web Design Way55

PMP Place56

DRY Drive57

Algebra Avenue58

LSP Lane59

XHTML Expressway60

The client supplied this input file.

It starts by listing all stations

Then defines subway lines

12

Sunday, October 12, 2008

Use Case Details

Load Subway Network

1. The admin supplies a file of stations and lines.
2. The system reads in the name of a station.
3. The system validates that the station doesn’t
already exist.
4. The system adds the new station to the subway.
5. The system repeats steps 2-4 until all stations are
added.
6. The system reads in the name of a line.
7. The system reads in two stations that are connected.
8. The system validates that the stations exist.
9. The system creates a new connection between the
two stations, going in both directions, on the current
line.
10. The system repeats steps 7-9 until the line is
complete.
11. The system repeats steps 6-10 until all lines are
entered.

This is a horrible use case
because:

a. too low level

b. too brittle

c. all of the above

Use case documents the
algorithm for reading input
file.

13

Sunday, October 12, 2008

“Yeah, I think I can think of something better…” *

Load Subway Network

1. The admin requests system to load subway file.
2. The system validates that file exists.
3. The system loads data.
4. The system validates data.
5. The system displays subway.

* Reference to Steve Martin Movie: “Roxanne”

Use case is still low level, but now less brittle. If the file format
changes, we don’t have to update this use case.

Indeed, I think this functionality is better represented as a feature than
a use case.

You don’t need use cases for everything.

14

Sunday, October 12, 2008

But, back to the original for textual analysis

Load Subway Network

1. The admin supplies a file of stations and lines.
2. The system reads in the name of a station.
3. The system validates that the station doesn’t
already exist.
4. The system adds the new station to the subway.
5. The system repeats steps 2-4 until all stations are
added.
6. The system reads in the name of a line.
7. The system reads in two stations that are connected.
8. The system validates that the stations exist.
9. The system creates a new connection between the
two stations, going in both directions, on the current
line.
10. The system repeats steps 7-9 until the line is
complete.
11. The system repeats steps 6-10 until all lines are
entered.

Nouns (Classes):
 admin
 system
 file
 station
 subway
 connection
 line

Verbs (methods)
 supplies a file
 reads in
 validates station
 adds a station
 repeats
 adds a connection 15

Sunday, October 12, 2008

Class Diagram: Domain Model

loadFromFile(File): Subway
SubwayLoader

addStation(String)
hasStation(String): boolean
addConnection(String, String, String)

Subway

getName(): String
equals(Object): boolean
hashCode(): int

name: String
Station

getStation1(): Station
getStation2(): Station
getLineName(): String

lineName: String
Connection

*
*stations connections

station1

station2

Note: notice decision not to
have an explicit line class.

Decision was made based
on knowledge of how this
system is used.

How would the diagram
change, if they had decided to
model subway lines explicitly?

16

Sunday, October 12, 2008

Have Use Case, Have Class Diagram, Will Code

class Station(object):1

 """The Station class represents a single named station on a subway line."""2

3

 def __init__(self, name):4

 """Every Station object has a name attribute."""5

 self.name = name6

7

 def __eq__(self, obj):8

 """Equality of Station objects depends on the lowercase version of9

 their names."""10

 if not isinstance(obj, Station):11

 return False12

 return self.name.lower() == obj.get_name().lower()13

14

 def __hash__(self):15

 """A Station object's hash code depends on the hash code of16

 the lowercase version of its name."""17

 return self.name.lower().__hash__()18

19

 def get_name(self):20

 """Retrieves the Station object's name."""21

 return self.name22

23 Python equivalent of Station
class shown in text book 17

Sunday, October 12, 2008

Code for Connection

from Station import Station1

2

class Connection(object):3

 """The Connection class represents a connection between two subway4

 stations along a particular subway line. Note: this class5

 is an information holder. It does nothing but store data."""6

7

 def __init__(self, station1, station2, line):8

 """Every Connection object has two stations and the name of its line."""9

 self.station1 = station110

 self.station2 = station211

 self.line = line12

13

 def get_station1(self):14

 """Retrieves a Connection object's first station."""15

 return self.station116

17

 def get_station2(self):18

 """Retrieves a Connection object's second station."""19

 return self.station220

21

 def get_line(self):22

 """Retrieves the name of a Connection object's subway line."""23

 return self.line24

25 18

Sunday, October 12, 2008

equals() method for Connection objects

from Station import Station1

2

class Connection(object):3

 """The Connection class represents a connection between two subway4

 stations along a particular subway line. Note: this class5

 is an information holder. It does nothing but store data."""6

7

 def __init__(self, station1, station2, line):8

 """Every Connection object has two stations and the name of its line."""9

 self.station1 = station110

 self.station2 = station211

 self.line = line12

13

 def __eq__(self, obj):14

 """Equality of Connection objects depends on the equality15

 of their attributes: station1, station2, line."""16

 if not isinstance(obj, Connection):17

 return False18

 result1 = self.station1 == obj.get_station1()19

 result2 = self.station2 == obj.get_station2()20

 result3 = self.line == obj.get_line()21

 return result1 and result2 and result322

23

 def __str__(self):24

 return '(%s,%s,%s)' % (self.station1,self.station2,self.line)25

26

 __repr__ = __str__27

28

 def get_station1(self):29

 """Retrieves a Connection object's first station."""30

 return self.station131

32

 def get_station2(self):33

 """Retrieves a Connection object's second station."""34

 return self.station235

36

 def get_line(self):37

 """Retrieves the name of a Connection object's subway line."""38

 return self.line39

40

Why define an equals() method for Station and Connection?

Because, we don’t want the standard equality metric (two
variables pointing at the same object). We want two
separate objects with the same attributes to be considered
equal. Why?

19

Sunday, October 12, 2008

It enables code like this

from Connection import Connection1

from Station import Station2

3

class Subway(object):4

 """The Subway class represents a subway line with stations and5

 connections between those stations."""6

7

 def __init__(self):8

 """Every Subway object has a collection of stations and a list9

 of connections."""10

 self.stations = []11

 self.connections = []12

13

 def add_station(self, name):14

 """If we have never seen the specified station name before, then15

 we add it to our collection of station objects."""16

 if not self.has_station(name):17

 self.stations.append(Station(name))18

19

 def has_station(self, name):20

 """Returns True if we have a station with the specified name."""21

 station = Station(name)22

 return station in self.stations23

24

 def has_connection(self, name1, name2, line):25

 """Returns True if we have a connection with the specified atts."""26

 connection = Connection(Station(name1), Station(name2), line)27

 return connection in self.connections28

29

 def add_connection(self, name1, name2, line):30

 """Adds a connection going in both directions to the subway31

 as long as specified names reference existing stations."""32

 if self.has_station(name1) and self.has_station(name2):33

 connection1 = Connection(Station(name1), Station(name2), line)34

 connection2 = Connection(Station(name2), Station(name1), line)35

 self.connections.append(connection1)36

 self.connections.append(connection2)37

38

add_station and has_station both take in strings, create Station objects, and then do
their jobs. In has_station(), we create a Station object and then check to see if another
object that equals it exists in the self.stations collection

What are the trade-offs with this style of coding?

Ease of Expression: whenever I need a new Station object, just create one!

Loss of Efficiency: more station objects == more memory consumed

20

Sunday, October 12, 2008

Code for Subway
from Connection import Connection1

from Station import Station2

3

class Subway(object):4

 """The Subway class represents a subway line with stations and5

 connections between those stations."""6

7

 def __init__(self):8

 """Every Subway object has a collection of stations and a list9

 of connections."""10

 self.stations = []11

 self.connections = []12

13

 def add_station(self, name):14

 """If we have never seen the specified station name before, then15

 we add it to our collection of station objects."""16

 if not self.has_station(name):17

 self.stations.append(Station(name))18

19

 def has_station(self, name):20

 """Returns True if we have a station with the specified name."""21

 station = Station(name)22

 return station in self.stations23

24

 def has_connection(self, name1, name2, line):25

 """Returns True if we have a connection with the specified atts."""26

 connection = Connection(Station(name1), Station(name2), line)27

 return connection in self.connections28

29

 def add_connection(self, name1, name2, line):30

 """Adds a connection going in both directions to the subway31

 as long as specified names reference existing stations."""32

 if self.has_station(name1) and self.has_station(name2):33

 connection1 = Connection(Station(name1), Station(name2), line)34

 connection2 = Connection(Station(name2), Station(name1), line)35

 self.connections.append(connection1)36

 self.connections.append(connection2)37

38

21

Sunday, October 12, 2008

Loose Coupling in RouteFinder

• The book raises an interesting issue about the interface of the Subway class

• In particular, addStation() and addConnection() accept strings rather
Station objects

• Why?

• To promote lose coupling. If the clients of Subway only ever deal with
strings, then they do not depend on classes like Station and Connection

• Those classes are used internally but not needed externally

• You should only expose clients of your code to the classes that they NEED to
interact with

• Classes that the clients don’t interact with can be changed with minimal client
code being affected.

22

Sunday, October 12, 2008

Next Steps

• Create Code for Subway Loader

• Create Test Case for Subway Loader

• Requires adding has_connection() to Subway class

• Demonstration

• We’ve now finished the first use case “Load Subway”

• Its time to perform a second iteration to tackle “Get Directions”

• We loop back to the Requirements stage and try to write this use case

23

Sunday, October 12, 2008

Get Directions Use Case

Get Directions

1. The travel agent supplies a starting and ending station.
2. System validates that stations exist.
3. System calculates route.
4. System prints route.

Looks simple enough!

Note: we’ve switched our focus from code back to customer.
We’ll use this switch in focus to identify new requirements, do
some design, and then go back to focusing on code.

You will shift focus like this multiple times as you progress
24

Sunday, October 12, 2008

Update Class Diagram

loadFromFile(File): Subway
SubwayLoader

addStation(String)
hasStation(String): boolean
addConnection(String, String, String)
hasConnection(String, String, String): boolean
getDirections(String, String): Connection [*]

Subway

getName(): String
equals(Object): boolean
hashCode(): int

name: String
Station

getStation1(): Station
getStation2(): Station
getLineName(): String

lineName: String
Connection

*
*stations connections

station1

station2

printDirections(Connection [*])
SubwayPrinter

One new class
and one new method

25

Sunday, October 12, 2008

Changes to Subway

• We need to use Dijkstra’s algorithm to discover the shortest path between
any two stations (nodes) on our subway (graph)

• To do that, we have to update Subway such that

• It contains a hash table called network that keeps track of what stations
are directly reachable from a particular station

• For example, starting at XHTML Expressway, there are four stations
that are directly reachable: Weather-O-Rama, Inc., LSP Lane, Infinite
Circle, Choc-O-Holic, Inc.

• We then implement Dijkstra’s algorithm in the getDirections() method

26

Sunday, October 12, 2008

Layman’s Description of Dijkstra’s Algorithm

• Adapted from Wikipedia: <http://en.wikipedia.org/wiki/Dijkstra's_algorithm>

• Using a street map, mark streets (trace a street with a marker) in a certain
order, until you have a route marked from a starting point to a destination.

• The order is simple: from all the street intersections of the already marked
routes, find the closest unmarked intersection - closest to the starting
point (the "greedy" part).

• Your new route is the entire marked route to the intersection plus the street
to the new, unmarked intersection

• Mark that street to that intersection, draw an arrow with the direction, then
repeat

• Never mark any intersection twice

• When you get to the destination, follow the arrows backwards. There will
be only one path back against the arrows, the shortest one.

27

Sunday, October 12, 2008

http://en.wikipedia.org/wiki/Dijkstra's_algorithm
http://en.wikipedia.org/wiki/Dijkstra's_algorithm

Last Step: Implement SubwayPrinter

• Accept route from getDirections()

• print “Start out at <starting point> and get on <first line>”

• Loop until destination is reached

• If next connection on same line, then print “continue past <station>”

• Otherwise, print “when you reach <station> switch to <next line>”

• print “Get off at <destination> and enjoy yourself”

• Need to write test case and test results

28

Sunday, October 12, 2008

Demonstration

• Review Dijkstra code in Subway.py

• Review printing code in SubwayPrinter.py

• Try out test code in SubwayPrinter.py

29

Sunday, October 12, 2008

We’re Done!

• We’ll almost

• We could always add additional ways to print out the route

• We could look for additional ways to clean up the current design

• We could look for additional functionality and continue to iterate

• The important thing is that we’ve seen how to bring everything we’ve
discussed this semester together to solve a software design problem from
start to finish

• Take a look at the two implementations of this system

• Find similarities and differences

• Be sure to understand the code

30

Sunday, October 12, 2008

Coming Up Next

• Midterm and Midterm Discussion (Week 8)

• Framework Project Demonstrations (Week 9)

• Start of Semester Project

• Design Patterns (Week 10)

31

Sunday, October 12, 2008

