
Originality is Overrated: OO Design Principles

Kenneth M. Anderson
University of Colorado, Boulder

CSCI 4448/6448 — Lecture 12 — 10/02/2008

© University of Colorado, 2008

Friday, October 3, 2008

Lecture Goals

• Review material from Chapter 8 of the OO A&D textbook

• Object-Oriented Design Principles

• Open-Closed Principle

• Don’t Repeat Yourself

• Single Responsibility Principle

• Liskov Substitution Principle

• Aggregation and Composition, Revisited

• Discuss the examples in Chapter 8

• Emphasize the OO concepts and techniques encountered in Chapter 8

2

Friday, October 3, 2008

Originality is Overrated

• Corollary: “Only Steal from the Best” — various sources

• OO A&D has been performed in various forms and in various contexts for
nearly 40 years

• Over that time, designers have developed a set of principles that ease the
task of creating OO designs

• If you apply these principles in your own code, you will be “stealing” from
the best that the OO A&D community has to offer

• The same is true of Design Patterns

3

Friday, October 3, 2008

OO Principles: What We’ve Seen So Far

• We’ve seen the following principles in action over the past eight lectures

• Classes are about behavior

• Emphasize the behavior of classes over the data of classes

• Don’t subclass for data-related reasons

• Encapsulate what varies

• Provides info. hiding, limits impact of change, increases cohesion

• One reason to change

• Limits impact of change, increases cohesion

• Code to an Interface

• Promotes flexible AND extensible code

• Code applies across broad set of classes, subclasses can be added
in a straightforward fashion (including at run-time)

4

Friday, October 3, 2008

New Principles

• Open-Closed Principle (OCP)

• Classes should be open for extension and closed for modification

• Don’t Repeat Yourself (DRY)

• Avoid duplicate code by abstracting out things that are common and
placing those things in a single location

• Single Responsibility Principle (SRP)

• Every object in your system should have a single responsibility, and all the
object’s services should be focused on carrying it out

• Liskov Substitution Principle (LSP)

• Subtypes must be substitutable for their base types

5

Friday, October 3, 2008

Open-Closed Principle

• Classes should be open for extension and closed for modification

• Basic Idea:

• Prevent, or heavily discourage, changes to the behavior of existing classes

• especially classes that exist near the root of an inheritance hierarchy

• If a change is required, create a subclass and allow it to extend/override
the original behavior

• This means you must carefully design what methods are made public
and protected in these classes; private methods cannot be extended

• Why is this important?

• Limits impact on code that follows “Code to an Interface” principle

• If you change the behavior of an existing class, a lot of client code may
need to be updated

6

Friday, October 3, 2008

Example

• We’ve seen one example of the Open-Closed Principle in action

• InstrumentSpec.matches() being extended by GuitarSpec and
MandolinSpec

getBuilder(): Builder
getModel(): String
getType(): Type
getBackWood(): Wood
getTopWood(): Wood
matches(InstrumentSpec): boolean

model: String
InstrumentSpec

getStyle(): Style
matches(InstrumentSpec): boolean

MandolinSpec

getNumStrings(): int
matches(InstrumentSpec): boolean

numStrings: int
GuitarSpec

7

Friday, October 3, 2008

Is this just about Inheritance?

• Inheritance is certainly the easiest way to apply this principle

• but its not the only way

• In looking at Design Patterns, we’ll see that composition and delegation offer
more flexibility in extending the behavior of a system

• Inheritance still plays a role but its more background than foreground

• The key point of the OCP is to get you to be reluctant to change working
code, look for opportunities to extend, compose and/or delegate your way to
achieve what you need first

8

Friday, October 3, 2008

Don’t Repeat Yourself

• Avoid duplicate code by abstracting out things that are common and placing
those things in a single location

• Basic Idea

• Duplication is Bad!

• At all levels of software engineering: Analysis, Design, Code, and Test

• We want to avoid duplication in our requirements, use cases, feature lists, etc.

• We want to avoid duplication of responsibilities in our code

• We want to avoid duplication of test coverage in our tests

• Why?

• Incremental errors can creep into a system when one copy is changed but
the others are not

• Isolation of Change Requests: We want to go to ONE place when
responding to a change request

9

Friday, October 3, 2008

recognize(bark: string)
BarkRecognizer

pressButton()
Remote

open()
close()
isOpen(): boolean

open: boolean
DogDoor

door door

DogDoorSimulator

• Duplication of Code: Closing the Door in Chapter 2

• We had the responsibility for closing the door automatically in our “dog
door” example originally living in the RemoteControl Class.

• When we added a BarkRecognizer Class to the system, it opened the door
automatically but failed to close the door

• We could have placed a copy of the code to automatically close the
door in BarkRecognizer but that would have violated the DRY principle

• Instead, we moved the responsibility to the shared Door class

Example (I)

10

Friday, October 3, 2008

Example (II)

• DRY is really about ONE requirement in ONE place

• We want each responsibility of the system to live in a single, sensible place

• New Requirements for the Dog Door System: Beware of Duplicates

• The dog door should alert the owner when something inside the house
gets too close to the dog door

• The dog door will open only during certain hours of the day

• The dog door will be integrated into the house’s alarm system to make
sure it doesn’t activate when the dog door is open

• The dog door should make a noise if the door cannot open because of a
blockage outside

• The dog door will track how many times the dog uses the door

• When the door closes, the house alarm will re-arm if it was active before
the door opened

11

Friday, October 3, 2008

Example (III)

• New Requirements for the Dog Door System: Beware of Duplicates

• The dog door should alert the owner when something inside the house
gets too close to the dog door

• The dog door will open only during certain hours of the day

• The dog door will be integrated into the house’s alarm system to make
sure it doesn’t activate when the dog door is open

• The dog door should make a noise if the door cannot open because of a
blockage outside

• The dog door will track how many times the dog uses the door

• When the door closes, the house alarm will re-arm if it was active before
the door opened

12

Friday, October 3, 2008

Example (III)

• New Requirements for the Dog Door System

• The dog door should alert the owner when something is too close to the
dog door

• The dog door will open only during certain hours of the day

• The dog door will be integrated into the house’s alarm system

• The dog door will track how many times the dog uses the door

• Duplicates Removed!

13

Friday, October 3, 2008

Example (IV)

• Ruby on Rails makes use of DRY as a core part of its design

• focused configuration files; no duplication of information

• for each request, often single controller, single model update, single view

• But, prior to Ruby on Rails 1.2, there was duplication hiding in the URLs used
by Rails applications

• POST /people/create # create a new person

• GET /people/show/1 # show person with id 1

• POST /people/update/1 # edit person with id 1

• POST /people/destroy/1 # delete person with id 1

14

Friday, October 3, 2008

Example (V)

• The duplication exists between the HTTP method name and the operation
name in the URL

• POST /people/create

• Recently, there has been a movement to make use of the four major “verbs”
of HTTP

• PUT/POST == create information (create)

• GET == retrieve information (read)

• POST == update information (update)

• DELETE == destroy information (destroy)

• These verbs mirror the CRUD operations found in databases

• Thus, saying “create” in the URL above is a duplication

15

Friday, October 3, 2008

Example (VI)

• In version 1.2, Rails eliminates this duplication for something called
“resources”

• Now URLs look like this:

• POST /people

• GET /people/1

• PUT /people/1

• DELETE /people/1

• And the duplication is logically eliminated

• Disclaimer: … but not actually eliminated… Web servers do not universally
support PUT and DELETE “out of the box”. As a result, Rails uses POST

• POST /people/1
Post-Semantics: Delete

16

Friday, October 3, 2008

Single Responsibility Principle

• Every object in your system should have a single responsibility, and all the
object’s services should be focused on carrying it out

• This is obviously related to the “One Reason to Change” principle

• If you have implemented SRP correctly, then each class will have only one
reason to change

• The “single responsibility” doesn’t have to be “small”, it might be “manage
units” in Gary’s Game System Framework

• We’ve encountered SRP before

• SRP == high cohesion

• “One Reason To Change” promotes SRP

• DRY is often used to achieve SRP

17

Friday, October 3, 2008

Return to Textual Analysis

• One way of identifying high cohesion in a system is to do the following

• For each class C

• For each method M

• Write “The C Ms itself”

• Examples

• The Automobile drives itself

• The Automobile washes itself

• The Automobile starts itself

• If any one of these sentences doesn’t make sense then investigate further.
You may have discovered a service that belongs to a different responsibility of
the system and should be moved to a different class

• This may require first creating a new class before performing the move

18

Friday, October 3, 2008

SRP in Action

• We’ve seen SRP used in several places over the last eight lectures

• Automatically closing the door in the dog door example

• InstrumentSpec handling all instrument-related properties in Rick’s Guitars

• Instrument handling all inventory-related properties in Rick’s Guitars

• Board handling board-related services in the Game System Framework

• Unit handling all property-related functionality in the Game System
Framework

• Essentially any time we’ve seen a highly cohesive class!

19

Friday, October 3, 2008

Liskov Substitution Principle

• Subtypes must be substitutable for their base types

• Basic Idea

• Instances of subclasses do not violate the behaviors exhibited by
instances of their superclasses

• They may constrain that behavior but they do not contradict that
behavior

• Named after Barbara Liskov who co-authored a paper with Jeannette Wing in
1993 entitled Family Values: A Behavioral Notion of Subtyping

• Let q(x) be a property provable about objects x of type T. Then q(y) should
be true for objects y of type S where S is a subtype of T.

• Properties that hold on superclass objects, hold on subclass objects

• Return to Rectangle/Square: WidthAndHeightMayBeDifferent(Rectangle)
equals true for Rectangles and equals false for Square

20

Friday, October 3, 2008

Well-Designed Inheritance

• LSP is about well-designed inheritance

• When I put an instance of a subclass in a place where I normally place an
instance of its superclass

• the functionality of the system must remain correct

• (not necessarily the same, but correct)

21

Friday, October 3, 2008

Bad Example (I)

• The book provides an example of misusing inheritance (and violating the LSP)

• Extend Board to produce Board3D

getTile(int, int): Tile
addUnit(Unit, int, int)
removeUnit(Unit, int int)
removeUnits(int, int)
getUnits(int, int): List

width: int
height: int
tiles: Tile [*][*]

Board

getTile(int, int, int): Tile
addUnit(Unit, int, int, int)
removeUnit(Unit, int int, int)
removeUnits(int, int, int)
getUnits(int, int, int): List

zpos: int
3dTiles: Tile [*][*][*]

Board3D

22

Friday, October 3, 2008

Bad Example (II)

• But this means that an instance of Board3D looks like this:

• Each attribute and method in bold
is meaningless in this object

• Board3D is getting nothing useful
from Board except for width and
height!!

• We certainly could NOT create a
Board3D object and hand it to code
expecting a Board object!

• As a result, this design violates the
LSP principle

• How to fix?

getTile(int, int): Tile
addUnit(Unit, int, int)
removeUnit(Unit, int int)
removeUnits(int, int)
getUnits(int, int): List
getTile(int, int, int): Tile
addUnit(Unit, int, int, int)
removeUnit(Unit, int int, int)
removeUnits(int, int, int)
getUnits(int, int, int): List

width: int
height: int
zpos: int
tiles: Tile [*][*]
3dTiles: Tile [*][*][*]

: Board3D

23

Friday, October 3, 2008

Delegation to the Rescue! (Again)

• You can understand why the Game System Framework thought they could
extend Board when creating Board3D

• Board has a lot of useful functionality and a Board3D should try to reuse
that functionality as much as possible

• However, the Board3D has no need to CHANGE that functionality and the
Board3D doesn’t really behave in the same way as a board

• For instance, a unit on “level 10” may be able to attack a unit on “level
1”; such functionality doesn’t make sense in the context of a 2D board

• Thus, if you need to use functionality in another class, but you don’t want to
change that functionality, consider using delegation instead of inheritance

• Inheritance was simply the wrong way to gain access to the Board’s
functionality

• Delegation is when you hand over the responsibility for a particular task to
some other class or method

24

Friday, October 3, 2008

New Class Diagram

getTile(int, int): Tile
addUnit(Unit, int, int)
removeUnit(Unit, int int)
removeUnits(int, int)
getUnits(int, int): List

width: int
height: int
tiles: Tile [*][*]

Board

getTile(int, int, int): Tile
addUnit(Unit, int, int, int)
removeUnit(Unit, int int, int)
removeUnits(int, int, int)
getUnits(int, int, int): List

zpos: int
Board3D

boards *

Board3D now maintains a list of Board objects
for each legal value of “zpos”

It then delegates to the Board object to handle
the requested service

public Tile getTile(int x, int y, int z) {
 Board b = boards.get(z);
 return b.getTile(x,y);
}

Note: book gets UML diagram wrong on page
405. The “3dTiles: Tile [*][*][*] attribute is
eliminated with this new design

25

Friday, October 3, 2008

Another Take on Composition

• The book defines composition as

• Composition allows you to use behavior from a family of classes, and to
change that behavior at runtime

• Their definition is essentially equivalent to the Strategy design pattern

• Delegation is useful when the behavior of the object you’re delegating to
never changes

• Delegation is still used in composition, but the object that you are
delegating to can change at run-time

• Example: Unit and Weapon

• A unit can invoke the attack() method on its Weapon; as the game
progresses, the unit may switch among different weapons at will

• The unit is composing its “attack behavior” out of a number of Weapon
instances; existence dependency applies; delete unit ⇒ delete weapons

26

Friday, October 3, 2008

Another Take on Aggregation

• In composition, the object composed of other behaviors owns those
behaviors. When the object is destroyed, so are all of its behaviors

• The behaviors in a composition do not exist outside of the composition
itself

• If this is not what you want, then use aggregation: composition without the
abrupt ending

• Aggregation is when one class is used as part of another class, but still
exists outside of that other class

• The book uses an example of a Unit that can arrive at a building and leave
its weapons there in storage, the relationship between Unit and Weapon is
now an aggregation

27

Friday, October 3, 2008

Implication: Use Inheritance Sparingly

• Delegation, composition, and aggregation all offer alternatives to inheritance
when you need to reuse the behavior of another class

• Only use inheritance when

• an IS-A relationship exists between the superclass and the subclass

• AND the subclass behaves like a superclass (i.e. maintains the
properties of the superclass in its behavior)

• If you favor delegation, composition, and aggregation over inheritance, your
software will usually be more flexible and easier to maintain, extend, and
reuse

• This was the subject of a religious war during the 90s

• Unlike “emacs vs. vi”, the war is over and delegation won!

28

Friday, October 3, 2008

Wrapping Up

• We’ve added four new OO principles to our toolkit

• Apply these principles and you’ll see a marked increase in the flexibility
and extensibility of your OO designs

• Indeed, one of the “secrets” of design patterns is that they invariably lead
to code that exhibit these principles

• We’ve also seen that inheritance is a tool to be used sparingly

• Favor delegation, composition, and aggregation to gain run-time flexibility

• Use inheritance when the subclass’s semantics and behavior fit neatly with
its superclass

29

Friday, October 3, 2008

Ken’s Corner (I)

• Preview of What’s to Come

• GRASP

• General Responsibility Assignment Software Patterns

• The name was chosen to suggest the importance of grasping these
principles to successfully design object-oriented software

• There are nine GRASP patterns

1.Creator: who is responsible for creating an object

2. Information Expert: Assign a responsibility to the object that has the
information to fulfill it

3.Low Coupling: When assessing alternatives, pick solutions with lower
coupling

30

Friday, October 3, 2008

Ken’s Corner (II)

• Nine Grasp Patterns, continued

4.Controller: How do you decide what object responds to an event?

5.High Cohesion: When assessing alternatives, pick solutions that lead to
higher cohesion

6.Polymorphism: How do you handle behaviors that vary by type?

7.Pure Fabrication: What happens when domain objects are not enough to
achieve a design with high cohesion and low coupling?

8. Indirection: How do you reduce the coupling between a set of objects?

9.Protected Variations: How do you protect software systems from
change?

• We’ll return to GRASP after we cover Design Patterns

31

Friday, October 3, 2008

Coming Up Next

• Lecture 13: Testing And Iterating

• Read Chapter 9 of the OO A&D book

• Lecture 14: Putting It All Together

• Read Chapter 10 of the OO A&D book

• Studying for Midterm

• Midterm will be held on Tuesday, Oct. 14th

32

Friday, October 3, 2008

